scholarly journals Optimized Multi-layer Machine Learning Technique for Movement Detection and Tracking in Video Data Stream

With the advent in technology, security and authentication has become the main aspect in computer vision approach. Moving object detection is an efficient system with the goal of preserving the perceptible and principal source in a group. Surveillance is one of the most crucial requirements and carried out to monitor various kinds of activities. The detection and tracking of moving objects are the fundamental concept that comes under the surveillance systems. Moving object recognition is challenging approach in the field of digital image processing. Moving object detection relies on few of the applications which are Human Machine Interaction (HMI), Safety and video Surveillance, Augmented Realism, Transportation Monitoring on Roads, Medical Imaging etc. The main goal of this research is the detection and tracking moving object. In proposed approach, based on the pre-processing method in which there is extraction of the frames with reduction of dimension. It applies the morphological methods to clean the foreground image in the moving objects and texture based feature extract using component analysis method. After that, design a novel method which is optimized multilayer perceptron neural network. It used the optimized layers based on the Pbest and Gbest particle position in the objects. It finds the fitness values which is binary values (x_update, y_update) of swarm or object positions. Method and output achieved final frame creation of the moving objects in the video using BLOB ANALYSER In this research , an application is designed using MATLAB VERSION 2016a In activation function to re-filter the given input and final output calculated with the help of pre-defined sigmoid. In proposed methods to find the clear detection and tracking in the given dataset MOT, FOOTBALL, INDOOR and OUTDOOR datasets. To improve the detection accuracy rate, recall rate and reduce the error rates, False Positive and Negative rate and compare with the various classifiers such as KNN, MLPNN and J48 decision Tree.

2019 ◽  
Vol 8 (3) ◽  
pp. 5740-5745

Background reckoning and the foreground, play prominent roles in the tasks of visual detection and tracking of objects. Moving Object Detection has been widely used in sundry discipline such as intelligent systems, security systems, video monitoring systems, banking places, provisionary systems, and so on. In this paper proposes moving objects detection and tracking method based on Embedded Video Surveillance. The method is based on using lines computed by a gradient-based optical flow and an edge detector gradient-based optical flow and edges are well matched for accurate computation of velocity, not much attention is paid to creating systems for tracking objects using this feature. The proposed method is compared with a recent work, proving its superior performance and when we want to represent high quality videos and images with, lower bit rate, and also suitable for real-world live video applications. This method reduces influences of foreground objects to the background model. The simulation results show that the background image can be obtained precisely and the moving objects recognition is achieved effectively


2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
Yizhong Yang ◽  
Qiang Zhang ◽  
Pengfei Wang ◽  
Xionglou Hu ◽  
Nengju Wu

Moving object detection in video streams is the first step of many computer vision applications. Background modeling and subtraction for moving detection is the most common technique for detecting, while how to detect moving objects correctly is still a challenge. Some methods initialize the background model at each pixel in the first N frames. However, it cannot perform well in dynamic background scenes since the background model only contains temporal features. Herein, a novel pixelwise and nonparametric moving object detection method is proposed, which contains both spatial and temporal features. The proposed method can accurately detect the dynamic background. Additionally, several new mechanisms are also proposed to maintain and update the background model. The experimental results based on image sequences in public datasets show that the proposed method provides the robustness and effectiveness in dynamic background scenes compared with the existing methods.


Author(s):  
Naveenkumar M ◽  
Sriharsha K. V. ◽  
Vadivel A

This chapter presents a novel approach for moving object detection and tracking based on contour extraction and centroid representation (CECR). Firstly, two consecutive frames are read from the video, and they are converted into grayscale. Next, the absolute difference is calculated between them and the result frame is converted into binary by applying gray threshold technique. The binary frame is segmented using contour extraction algorithm. The centroid representation is used for motion tracking. In the second stage of experiment, initially object is detected by using CECR and motion of each track is estimated by Kalman filter. Experimental results show that the proposed method can robustly detect and track the moving object.


Sign in / Sign up

Export Citation Format

Share Document