BINDING ALGORITHM FOR POWER OPTIMIZATION BASED ON NETWORK FLOW METHOD

2002 ◽  
Vol 11 (03) ◽  
pp. 259-271 ◽  
Author(s):  
YOONSEO CHOI ◽  
TAEWHAN KIM

We propose an efficient binding algorithm for power optimization in behavioral synthesis. In prior work, it has been shown that several binding problems for low-power can be formulated as multi-commodity flow problems (due to an iterative execution of data flow graph) and be solved optimally. However, since the multi-commodity flow problem is NP-hard, the application is limited to a class of small sized problems. To overcome the limitation, we address the problem of how we can effectively make use of the property of efficient flow computations in a network so that it is extensively applicable to practical designs while producing close-to-optimal results. To this end, we propose a two-step procedure, which (1) determines a feasible binding solution by partially utilizing the computation steps for finding a maximum flow of minimum cost in a network and then (2) refines it iteratively. Experiments with a set of benchmark examples show that the proposed algorithm saves the run time significantly while maintaining close-to-optimal bindings in most practical designs.

Mathematics ◽  
2021 ◽  
Vol 9 (15) ◽  
pp. 1716
Author(s):  
Adrian Marius Deaconu ◽  
Delia Spridon

Algorithms for network flow problems, such as maximum flow, minimum cost flow, and multi-commodity flow problems, are continuously developed and improved, and so, random network generators become indispensable to simulate the functionality and to test the correctness and the execution speed of these algorithms. For this purpose, in this paper, the well-known Erdős–Rényi model is adapted to generate random flow (transportation) networks. The developed algorithm is fast and based on the natural property of the flow that can be decomposed into directed elementary s-t paths and cycles. So, the proposed algorithm can be used to quickly build a vast number of networks as well as large-scale networks especially designed for s-t flows.


Author(s):  
Alireza Boloori ◽  
Monirehalsadat Mahmoudi

In this chapter, some applications of network flow problems are addressed based on each type of problem being discussed. For example, in the case of shortest path problems, their concept in facility layout, facility location, robotics, transportation, and very large-scale integration areas are pointed out in the first section. Furthermore, the second section deals with the implementation of the maximum flow problem in image segmentation, transportation, web communities, and wireless networks and telecommunication areas. Moreover, in the third section, the minimum-cost flow problem is discussed in fleeting and routing problems, petroleum, and scheduling areas. Meanwhile, a brief explanation about each application as well as some corresponding literature and research papers are presented in each section. In addition, based on available literature in each of these areas, some research gaps are identified, and future trends as well as chapter’s conclusion are pointed out in the fourth section.


2021 ◽  
Vol 4 (2) ◽  
pp. 8-14
Author(s):  
Phanindra Prasad Bhandari ◽  
Shree Ram Khadka

Network interdiction problem arises when an unwanted agent attacks the network system to deteriorate its transshipment efficiency. Literature is flourished with models and solution approaches for the problem. This paper considers a single commodity lexicographic maximum flow problem on a directed network with capacitated vertices to study two network flow problems under an arc interdiction. In the first, the objective is to find an arc on input network to be destroyed so that the residual lexicographically maximum flow is lexicographically minimum. The second problem aims to find a flow pattern resulting lexicographically maximum flow on the input network so that the total residual flow, if an arc is destroyed, is maximum. The paper proposes strongly polynomial time solution procedures for these problems.


Author(s):  
W. H. Moolman

The maximum flow and minimum cost-maximum flow problems are both concerned with determining flows through a network between a source and a destination. Both these problems can be formulated as linear programming problems. When given information about a network (network flow diagram, capacities, costs), computing enables one to arrive at a solution to the problem. Once the solution becomes available, it has to be applied to a real world problem. The use of the following computer software in solving these problems will be discussed: R (several packages and functions), specially written Pascal programs and Excel SOLVER. The minimum cost-maximum flow solutions to the following problems will also be discussed: maximum flow, minimum cost-maximum flow, transportation problem, assignment problem, shortest path problem, caterer problem.


2021 ◽  
Vol 33 (1) ◽  
pp. 77-89
Author(s):  
Marko Špoljarec ◽  
Robert Manger

This paper deals with robust optimization and network flows. Several robust variants of integer flow problems are considered. They assume uncertainty of network arc capacities as well as of arc unit costs (where applicable). Uncertainty is expressed by discrete scenarios. Since the considered variants of the maximum flow problem are easy to solve, the paper is mostly concerned with NP-hard variants of the minimum-cost flow problem, thus proposing an approximate algorithm for their solution. The accuracy of the proposed algorithm is verified by experiments.


2013 ◽  
Vol 23 (1) ◽  
pp. 3-17 ◽  
Author(s):  
Angelo Sifaleras

We present a wide range of problems concerning minimum cost network flows, and give an overview of the classic linear single-commodity Minimum Cost Network Flow Problem (MCNFP) and some other closely related problems, either tractable or intractable. We also discuss state-of-the-art algorithmic approaches and recent advances in the solution methods for the MCNFP. Finally, optimization software packages for the MCNFP are presented.


Sign in / Sign up

Export Citation Format

Share Document