Minimization of Common-Mode Voltage of Three-Phase Five-Level NPC Inverter Using 3D Space Vector Modulation

2020 ◽  
Vol 29 (14) ◽  
pp. 2050229 ◽  
Author(s):  
Palanisamy Ramasamy ◽  
Vijayakumar Krishnasamy

In this paper, a three-dimensional Space Vector Modulation (3D SVM) is implemented for minimization of Common-Mode Voltage (CMV) of five-level Neutral Point Clamped (NPC) inverter. The 3D SVM control includes all merits of 2D SVM and provides better control compared to other PWM strategies. The switching state vectors are selected based on the nearest vector Switching State Vector (NSV); it selects the switching vectors which are having the minimum CMV level. It leads to minimization of the bearing voltage and protection of the drive from the damage; also this system reduces the total harmonic distortion. The switching time is calculated by reference vector identification with large and small subcubes tracking and prisms tracking in 3D cubic region. The CMV level with 3D SVM scheme is compared with other PWM methods. The simulation and hardware results are verified using Matlab Simulink and FPGA processor.

Author(s):  
Bhaskar Bhattacharya ◽  
Ajoy Kumar Chakraborty

In three dimensional (3D) space vector modulation (SVM) theory with α-β-γ frame there are some issues which are well known and are widely practiced being quite obvious but without any proof so far. In this paper necessary scientific foundations to those issues have been provided. The foremost of these issues has been with the frame of reference to be considered in 3D SVM applications for unbalanced three phase systems. Although for balanced three phase systems there has been no controversy with α-β frame as the frame of reference but in 3D it has not yet been established which one, α-β-γ frame or the a-b-c frame, is mathematically correct. Another significant issue addressed in this work has been to ascertain the exact reason when a three phase system has to be represented in 2D or 3D space to apply SVM. It has been presented for the first time in this work that the key factor that determines whether 3D or 2D SVM has to be applied depends on the presence of time independent symmetrical components in a three phase ac system. Also it has been proved that the third axis, the Y–axis, represents the time independent quantity and that it must be directed perpendicular to the α-β plane passing through the origin.


Author(s):  
Bhaskar Bhattacharya ◽  
Ajoy Kumar Chakraborty

In three dimensional (3D) space vector modulation (SVM) theory with α-β-γ frame there are some issues which are well known and are widely practiced being quite obvious but without any proof so far. In this paper necessary scientific foundations to those issues have been provided. The foremost of these issues has been with the frame of reference to be considered in 3D SVM applications for unbalanced three phase systems. Although for balanced three phase systems there has been no controversy with α-β frame as the frame of reference but in 3D it has not yet been established which one, α-β-γ frame or the a-b-c frame, is mathematically correct. Another significant issue addressed in this work has been to ascertain the exact reason when a three phase system has to be represented in 2D or 3D space to apply SVM. It has been presented for the first time in this work that the key factor that determines whether 3D or 2D SVM has to be applied depends on the presence of time independent symmetrical components in a three phase ac system. Also it has been proved that the third axis, the Y–axis, represents the time independent quantity and that it must be directed perpendicular to the α-β plane passing through the origin.


Sign in / Sign up

Export Citation Format

Share Document