An Efficient Kernel FCM and Artificial Fish Swarm Optimization-Based Optimal Resource Allocation in Cloud

2020 ◽  
Vol 29 (16) ◽  
pp. 2050253
Author(s):  
Pravin Albert ◽  
Manikandan Nanjappan

Cloud computing model allows service-oriented system that fulfills the needs of the consumers. Capable resource management and task allocation are the important issues in cloud computing. Performance of the task scheduling method directly interrupts the utilization of cloud computing resources and the quality of experience of users. For that reason, reasonable virtual machine (VM) allocation and task scheduling are extremely important. In this paper, an efficient resource allocation model is proposed. Initially, the virtual machines are clustered with the help of Kernel Fuzzy [Formula: see text]-Means Clustering (KFCM) algorithm to reduce the complexity. After the clustering process, the user tasks are allocated to the particular VM using artificial fish swarm optimization (AFSO) algorithm. A multi-objective function is designed to achieve an optimal resource allocation. The performance of the suggested technique is tested in terms of different metrics.

Author(s):  
Sirisha Potluri ◽  
Katta Subba Rao

Shortest job first task scheduling algorithm allocates task based on the length of the task, i.e the task that will have small execution time will be scheduled first and the longer tasks will be executed later based on system availability. Min- Min algorithm will schedule short tasks parallel and long tasks will follow them. Short tasks will be executed until the system is free to schedule and execute longer tasks. Task Particle optimization model can be used for allocating the tasks in the network of cloud computing network by applying Quality of Service (QoS) to satisfy user’s needs. The tasks are categorized into different groups. Every one group contains the tasks with attributes (types of users and tasks, size and latency of the task). Once the task is allocated to a particular group, scheduler starts assigning these tasks to accessible services. The proposed optimization model includes Resource and load balancing Optimization, Non-linear objective function, Resource allocation model, Queuing Cost Model, Cloud cost estimation model and Task Particle optimization model for task scheduling in cloud computing environement. The main objectives identified are as follows. To propose an efficient task scheduling algorithm which maps the tasks to resources by using a dynamic load based distributed queue for dependent tasks so as to reduce cost, execution and tardiness time and to improve resource utilization and fault tolerance. To develop a multi-objective optimization based VM consolidation technique by considering the precedence of tasks, load balancing and fault tolerance and to aim for efficient resource allocation and performance of data center operations. To achieve a better migration performance model to efficiently model the requirements of memory, networking and task scheduling. To propose a QoS based resource allocation model using fitness function to optimize execution cost, execution time, energy consumption and task rejection ratio and to increase the throughput. QoS parameters such as reliability, availability, degree of imbalance, performance and SLA violation and response time for cloud services can be used to deliver better cloud services.


2019 ◽  
Vol 10 (4) ◽  
pp. 1-17 ◽  
Author(s):  
Mohit Agarwal ◽  
Gur Mauj Saran Srivastava

Cloud computing is an emerging technology which involves the allocation and de-allocation of the computing resources using the internet. Task scheduling (TS) is one of the fundamental issues in cloud computing and effort has been made to solve this problem. An efficient task scheduling mechanism is always needed for the allocation to the available processing machines in such a manner that no machine is over or under-utilized. Scheduling tasks belongs to the category of NP-hard problem. Through this article, the authors are proposing a particle swarm optimization (PSO) based task scheduling mechanism for the efficient scheduling of tasks among the virtual machines (VMs). The proposed algorithm is compared using the CloudSim simulator with the existing greedy and genetic algorithm-based task scheduling mechanism. The simulation results clearly show that the PSO-based task scheduling mechanism clearly outperforms the others as it results in almost 30% reduction in makespan and increases the resource utilization by 20%.


2021 ◽  
Author(s):  
Jianying Miao

This thesis describes an innovative task scheduling and resource allocation strategy by using thresholds with attributes and amount (TAA) in order to improve the quality of service of cloud computing. In the strategy, attribute-oriented thresholds are set to decide on the acceptance of cloudlets (tasks), and the provisioning of accepted cloudlets on suitable resources represented by virtual machines (VMs,). Experiments are performed in a simulation environment created by Cloudsim that is modified for the experiments. Experimental results indicate that TAA can significantly improve attribute matching between cloudlets and VMs, with average execution time reduced by 30 to 50% compared to a typical non-filtering policy. Moreover, the tradeoff between acceptance rate and task delay, as well as between prioritized and non-prioritized cloudlets, may be adjusted as desired. The filtering type and range and the positioning of thresholds may also be adjusted so as to adapt to the dynamically changing cloud environment.


2020 ◽  
Vol 17 (4) ◽  
pp. 1990-1998
Author(s):  
R. Valarmathi ◽  
T. Sheela

Cloud computing is a powerful technology of computing which renders flexible services anywhere to the user. Resource management and task scheduling are essential perspectives of cloud computing. One of the main problems of cloud computing was task scheduling. Usually task scheduling and resource management in cloud is a tough optimization issue at the time of considering quality of service needs. Huge works under task scheduling focuses only on deadline issues and cost optimization and it avoids the significance of availability, robustness and reliability. The main purpose of this study is to develop an Optimized Algorithm for Efficient Resource Allocation and Scheduling in Cloud Environment. This study uses PSO and R factor algorithm. The main aim of PSO algorithm is that tasks are scheduled to VM (virtual machines) to reduce the time of waiting and throughput of system. PSO is a technique inspired by social and collective behavior of animal swarms in nature and wherein particles search the problem space to predict near optimal or optimal solution. A hybrid algorithm combining PSO and R-factor has been developed with the purpose of reducing the processing time, make span and cost of task execution simultaneously. The test results and simulation reveals that the proposed method offers better efficiency than the previously prevalent approaches.


2021 ◽  
pp. 1-13
Author(s):  
Punit Gupta ◽  
Sanjeet Bhagat ◽  
Pradeep Rawat

The evolution of cloud computing is increasing exponentially which provides everything as a service. Clouds made it possible to move a huge amount of data over the networks on-demand. It removed the physical necessity of resources as resources are available virtually over the networks. Emerge of new technologies improvising the cloud system and trying to overcome cloud computing challenges like resource optimization, securities etc. Proper utilization of resources is still a primary target for the cloud system as it will increase the cost and time efficiency. Cloud is a pay-per-uses basis model which needs to perform in a flexible manner with the increase and decrease in demand on every level. In general, cloud is assumed to be non-faulty but faulty is a part of any system. This article focuses on the hybridization of Neural networks with the harmony Search Algorithm (HSA). The hybrid approach achieves a better optimal solution in a feasible time duration in the faulty environment to improve the task failure and improve reliability. The harmony Search approach is inspired from the music improvisation technique, where notes are adjusted until perfect harmony is matched. HS (Harmony search) is chosen, as it is capable to provide an optimal solution in a feasible time, even for complex optimization problems. An ANN-HS model is introduced to achieve optimal resource allocation. The presented model is inspired by Harmony Search and ANN. The proposed model considers multi-objective criteria. The performance criteria include execution time, task failure count and power consumption(Kwh).


Sign in / Sign up

Export Citation Format

Share Document