PERIODIC ORBITS IN THE NEWTON–LEIPNIK SYSTEM

2002 ◽  
Vol 12 (03) ◽  
pp. 511-523 ◽  
Author(s):  
BENJAMIN A. MARLIN

This paper considers an autonomous nonlinear system of differential equations derived in [Leipnik, 1979]. A criterion for the existence of closed orbits in similar systems is presented. Numerical results are made rigorous by the use of interval analytic techniques in establishing the existence of a periodic solution which is not asymptotically stable. The limitations of the method of locating orbits are considered when a promising candidate for a closed orbit is shown not to intersect itself.

2019 ◽  
Vol 19 (12) ◽  
pp. 1950160 ◽  
Author(s):  
Jing Zhang ◽  
Jie Xu ◽  
Xuegang Yuan ◽  
Wenzheng Zhang ◽  
Datian Niu

Some significant behaviors on strongly nonlinear vibrations are examined for a thin-walled cylindrical shell composed of the classical incompressible Mooney–Rivlin material and subjected to a single radial harmonic excitation at the inner surface. First, with the aid of Donnell’s nonlinear shallow-shell theory, Lagrange’s equations and the assumption of small strains, a nonlinear system of differential equations for the large deflection vibration of a thin-walled shell is obtained. Second, based on the condensation method, the nonlinear system of differential equations is reduced to a strongly nonlinear Duffing equation with a large parameter. Finally, by the appropriate parameter transformation and modified Lindstedt–Poincar[Formula: see text] method, the response curves for the amplitude-frequency and phase-frequency relations are presented. Numerical results demonstrate that the geometrically nonlinear characteristic of the shell undergoing large vibrations shows a hardening behavior, while the nonlinearity of the hyperelastic material should weak the hardening behavior to some extent.


Symmetry ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 723
Author(s):  
Vicente Martínez

In this paper, we use an SIRD model to analyze the evolution of the COVID-19 pandemic in Spain, caused by a new virus called SARS-CoV-2 from the coronavirus family. This model is governed by a nonlinear system of differential equations that allows us to detect trends in the pandemic and make reliable predictions of the evolution of the infection in the short term. This work shows this evolution of the infection in various changing stages throughout the period of maximum alert in Spain. It also shows a quick adaptation of the parameters that define the disease in several stages. In addition, the model confirms the effectiveness of quarantine to avoid the exponential expansion of the pandemic and reduce the number of deaths. The analysis shows good short-term predictions using the SIRD model, which are useful to influence the evolution of the epidemic and thus carry out actions that help reduce its harmful effects.


2016 ◽  
Vol 09 (05) ◽  
pp. 1650071 ◽  
Author(s):  
Muhammad Asad Iqbal ◽  
Syed Tauseef Mohyud-Din ◽  
Bandar Bin-Mohsin

The present study deals with the introduction of an alteration in Legendre wavelets method by availing of the Picard iteration method for system of differential equations and named it Legendre wavelet-Picard method (LWPM). Convergence of the proposed method is also discussed. In order to check the competence of the proposed method, basic enzyme kinetics is considered. Systems of nonlinear ordinary differential equations are formed from the considered enzyme-substrate reaction. The results obtained by the proposed LWPM are compared with the numerical results obtained from Runge–Kutta method of order four (RK-4). Numerical results and those obtained by LWPM are in excellent conformance, which would be explained by the help of table and figures. The proposed method is easy and simple to implement as compared to the other existing analytical methods used for solving systems of differential equations arising in biology, physics and engineering.


Author(s):  
Adu A.M. Wasike ◽  
Wandera Ogana

We prove the existence of an asymptotically stable periodic solution of a system of delay differential equations with a small time delay t > 0. To achieve this, we transform the system of equations into a system of perturbed ordinary differential equations and then use perturbation results to show the existence of an asymptotically stable periodic solution. This approach is contingent on the fact that the system of equations with t = 0 has a stable limit cycle. We also provide a comparative study of the solutions of the original system and the perturbed system.  This comparison lays the ground for proving the existence of periodic solutions of the original system by Schauder's fixed point theorem.   


2014 ◽  
Vol 36 (3) ◽  
pp. 767-780
Author(s):  
SÉRGIO R. FENLEY

We produce infinitely many examples of Anosov flows in closed $3$-manifolds where the set of periodic orbits is partitioned into two infinite subsets. In one subset every closed orbit is freely homotopic to infinitely other closed orbits of the flow. In the other subset every closed orbit is freely homotopic to only one other closed orbit. The examples are obtained by Dehn surgery on geodesic flows. The manifolds are toroidal and have Seifert pieces and atoroidal pieces in their torus decompositions.


Sign in / Sign up

Export Citation Format

Share Document