Existence, Uniqueness and Stability of Periodic Solution for Nonlinear System of Integro-Differential Equations

2017 ◽  
Vol 5 (1) ◽  
pp. 120-127
Author(s):  
Raad Butris ◽  
Ava Rafeeq ◽  
Hewa Faris
2002 ◽  
Vol 12 (03) ◽  
pp. 511-523 ◽  
Author(s):  
BENJAMIN A. MARLIN

This paper considers an autonomous nonlinear system of differential equations derived in [Leipnik, 1979]. A criterion for the existence of closed orbits in similar systems is presented. Numerical results are made rigorous by the use of interval analytic techniques in establishing the existence of a periodic solution which is not asymptotically stable. The limitations of the method of locating orbits are considered when a promising candidate for a closed orbit is shown not to intersect itself.


2021 ◽  
Vol 19 (1) ◽  
pp. 760-772
Author(s):  
Ahmed Alsaedi ◽  
Bashir Ahmad ◽  
Badrah Alghamdi ◽  
Sotiris K. Ntouyas

Abstract We study a nonlinear system of Riemann-Liouville fractional differential equations equipped with nonseparated semi-coupled integro-multipoint boundary conditions. We make use of the tools of the fixed-point theory to obtain the desired results, which are well-supported with numerical examples.


2019 ◽  
Vol 19 (12) ◽  
pp. 1950160 ◽  
Author(s):  
Jing Zhang ◽  
Jie Xu ◽  
Xuegang Yuan ◽  
Wenzheng Zhang ◽  
Datian Niu

Some significant behaviors on strongly nonlinear vibrations are examined for a thin-walled cylindrical shell composed of the classical incompressible Mooney–Rivlin material and subjected to a single radial harmonic excitation at the inner surface. First, with the aid of Donnell’s nonlinear shallow-shell theory, Lagrange’s equations and the assumption of small strains, a nonlinear system of differential equations for the large deflection vibration of a thin-walled shell is obtained. Second, based on the condensation method, the nonlinear system of differential equations is reduced to a strongly nonlinear Duffing equation with a large parameter. Finally, by the appropriate parameter transformation and modified Lindstedt–Poincar[Formula: see text] method, the response curves for the amplitude-frequency and phase-frequency relations are presented. Numerical results demonstrate that the geometrically nonlinear characteristic of the shell undergoing large vibrations shows a hardening behavior, while the nonlinearity of the hyperelastic material should weak the hardening behavior to some extent.


2006 ◽  
Vol 73 (2) ◽  
pp. 175-182 ◽  
Author(s):  
Jifeng Chu ◽  
Xiaoning Lin ◽  
Daqing Jiang ◽  
Donal O'Regan ◽  
R. P. Agarwal

In this paper, we study the existence of positive periodic solutions to the equation x″ = f (t, x). It is proved that such a equation has more than one positive periodic solution when the nonlinearity changes sign. The proof relies on a fixed point theorem in cones.


2010 ◽  
Vol 40-41 ◽  
pp. 149-155
Author(s):  
Zhang Xiao Ying ◽  
Guan Li Hong

In this paper, we study positive solutions to the repulsive singular perturbation Hill equations with impulse effects. It is proved that such a perturbation problem has at least one positive impulsive periodic solution by a nonlinear alternative of Leray--Schauder.


Sign in / Sign up

Export Citation Format

Share Document