1 + 1D WAVE EQUATION INVERSE PROBLEM BY CHAOS CONTROL TECHNIQUES

2002 ◽  
Vol 12 (08) ◽  
pp. 1885-1893
Author(s):  
YANG LEI ◽  
YINGHAI WANG ◽  
KONGQING YANG ◽  
YOUMING LI

This paper presents a method of solving partial differential equation (PDE) inverse problem by using chaos control techniques. As an example, the chaos control inversion method of the wave equation inverse problem in tenpoint l + 1 dimensions is shown. The effectiveness of the method is demonstrated by the experimental data of the seismic wave inverse problem.

2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Guanglu Zhou ◽  
Boying Wu ◽  
Wen Ji ◽  
Seungmin Rho

This study presents numerical schemes for solving a parabolic partial differential equation with a time- or space-dependent coefficient subject to an extra measurement. Through the extra measurement, the inverse problem is transformed into an equivalent nonlinear equation which is much simpler to handle. By the variational iteration method, we obtain the exact solution and the unknown coefficients. The results of numerical experiments and stable experiments imply that the variational iteration method is very suitable to solve these inverse problems.


1980 ◽  
Vol 87 (3) ◽  
pp. 515-521
Author(s):  
Albert E. Heins

In a recent paper, hereafter referred to as I (1) we derived two alternate forms for the fundamental solution of the axially symmetric wave equation. We demonstrated that for α > 0, the fundamental solution (the so-called free space Green's function) of the partial differential equationcould be written asif b > rorif r > b.


Author(s):  
S. S. Okoya

This paper is devoted to closed-form solutions of the partial differential equation:θxx+θyy+δexp(θ)=0, which arises in the steady state thermal explosion theory. We find simple exact solutions of the formθ(x,y)=Φ(F(x)+G(y)), andθ(x,y)=Φ(f(x+y)+g(x-y)). Also, we study the corresponding nonlinear wave equation.


1947 ◽  
Vol 43 (3) ◽  
pp. 348-359 ◽  
Author(s):  
F. G. Friedlander

The ordinary one-dimensional wave equationhas special integrals of the formwhich satisfy the first-order equationsrespectively, and are often called progressive waves, or progressive integrals, of (1·1). The straight linesin an xt-plane are the characteristics of (1·1). It follows from (1·2) that progressive integrals of (1·1) are constant on some particular characteristic, and are characterized by this property.


Sign in / Sign up

Export Citation Format

Share Document