EXISTENCE ANALYSIS OF MOSAIC SOLUTIONS FOR ONE-DIMENSIONAL CELLULAR NEURAL NETWORKS

2006 ◽  
Vol 16 (12) ◽  
pp. 3669-3677 ◽  
Author(s):  
YUN-QUAN KE ◽  
FENG-YAN ZHOU

In this letter, the mosaic solutions of one-dimensional Cellular Neural Networks system (CNNs) are investigated. Three types of parameters, the synaptic weights, the input terms and the threshold are properly chosen in terms of Chua's driving-point plot. Moreover, we give sufficient conditions for the existence of the mosaic solutions.

2007 ◽  
Vol 17 (06) ◽  
pp. 1969-1983 ◽  
Author(s):  
YA-WEN CHANG ◽  
JONQ JUANG ◽  
CHIN-LUNG LI

In 1998, Chen et al. [1998] found an error in Marotto's paper [1978]. It was pointed out by them that the existence of an expanding fixed point z of a map F in Br( z ), the ball of radius r with center at z does not necessarily imply that F is expanding in Br( z ). Subsequent efforts (see e.g. [Chen et al., 1998; Lin et al., 2002; Li & Chen, 2003]) in fixing the problems have some discrepancies since they only give conditions for which F is expanding "locally". In this paper, we give sufficient conditions so that F is "globally" expanding. This, in turn, gives more satisfying definitions of a snap-back repeller. We then use those results to show the existence of chaotic backward traveling waves in a discrete time analogy of one-dimensional Cellular Neural Networks (CNNs). Some computer evidence of chaotic traveling waves is also given.


Author(s):  
Qianhong Zhang ◽  
Lihui Yang ◽  
Daixi Liao

Existence and exponential stability of a periodic solution for fuzzy cellular neural networks with time-varying delays Fuzzy cellular neural networks with time-varying delays are considered. Some sufficient conditions for the existence and exponential stability of periodic solutions are obtained by using the continuation theorem based on the coincidence degree and the differential inequality technique. The sufficient conditions are easy to use in pattern recognition and automatic control. Finally, an example is given to show the feasibility and effectiveness of our methods.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Chuangxia Huang ◽  
Hanfeng Kuang ◽  
Xiaohong Chen ◽  
Fenghua Wen

This paper considers the dynamics of switched cellular neural networks (CNNs) with mixed delays. With the help of the Lyapnnov function combined with the average dwell time method and linear matrix inequalities (LMIs) technique, some novel sufficient conditions on the issue of the uniformly ultimate boundedness, the existence of an attractor, and the globally exponential stability for CNN are given. The provided conditions are expressed in terms of LMI, which can be easily checked by the effective LMI toolbox in Matlab in practice.


2007 ◽  
Vol 17 (03) ◽  
pp. 953-963 ◽  
Author(s):  
XIAO-SONG YANG ◽  
YAN HUANG

In this paper we demonstrate chaos, two-tori and limit cycles in a new family of Cellular Neural Networks which is a one-dimensional regular array of four cells. The Lyapunov spectrum is calculated in a range of parameters, the bifurcation plots are presented as well. Furthermore, we confirm the nature of limit cycle, chaos and two-tori by studying Poincaré maps.


2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Guowei Yang ◽  
Yonggui Kao ◽  
Changhong Wang

This paper considers dynamical behaviors of a class of fuzzy impulsive reaction-diffusion delayed cellular neural networks (FIRDDCNNs) with time-varying periodic self-inhibitions, interconnection weights, and inputs. By using delay differential inequality,M-matrix theory, and analytic methods, some new sufficient conditions ensuring global exponential stability of the periodic FIRDDCNN model with Neumann boundary conditions are established, and the exponential convergence rate index is estimated. The differentiability of the time-varying delays is not needed. An example is presented to demonstrate the efficiency and effectiveness of the obtained results.


2010 ◽  
Vol 20 (05) ◽  
pp. 1541-1549 ◽  
Author(s):  
MAN-CHUN TAN ◽  
YAN ZHANG ◽  
WEN-LI SU ◽  
YU-NONG ZHANG

Some sufficient conditions to ensure the existence, uniqueness and global exponential stability of the equilibrium point of cellular neural networks with variable delays are derived. These results extend and improve the existing ones in the literature. Two illustrative examples are given to demonstrate the effectiveness of our results.


2007 ◽  
Vol 17 (12) ◽  
pp. 4403-4408
Author(s):  
BINGWEN LIU ◽  
ZHAOHUI YUAN

In this paper the convergence behavior of delayed cellular neural networks without almost periodic coefficients are considered. Some sufficient conditions are established to ensure that all solutions of the networks converge exponentially to an almost periodic function, which are new, and also complement previously known results.


Sign in / Sign up

Export Citation Format

Share Document