scholarly journals Exponential Stability and Periodicity of Fuzzy Delayed Reaction-Diffusion Cellular Neural Networks with Impulsive Effect

2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Guowei Yang ◽  
Yonggui Kao ◽  
Changhong Wang

This paper considers dynamical behaviors of a class of fuzzy impulsive reaction-diffusion delayed cellular neural networks (FIRDDCNNs) with time-varying periodic self-inhibitions, interconnection weights, and inputs. By using delay differential inequality,M-matrix theory, and analytic methods, some new sufficient conditions ensuring global exponential stability of the periodic FIRDDCNN model with Neumann boundary conditions are established, and the exponential convergence rate index is estimated. The differentiability of the time-varying delays is not needed. An example is presented to demonstrate the efficiency and effectiveness of the obtained results.

Author(s):  
Ivanka M. Stamova ◽  
Stanislav Simeonov

This research introduces a model of a delayed reaction–diffusion fractional neural network with time-varying delays. The Mittag–Leffler-type stability of the solutions is investigated, and new sufficient conditions are established by the use of the fractional Lyapunov method. Mittag–Leffler-type synchronization criteria are also derived. Three illustrative examples are established to exhibit the proposed sufficient conditions.


2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Xianghong Lai ◽  
Tianxiang Yao

This work is devoted to the stability study of impulsive cellular neural networks with time-varying delays and reaction-diffusion terms. By means of new Poincaré integral inequality and Gronwall-Bellman-type impulsive integral inequality, we summarize some novel and concise sufficient conditions ensuring the global exponential stability of equilibrium point. The provided stability criteria are applicable to Dirichlet boundary condition and show that not only the reaction-diffusion coefficients but also the regional features including the boundary and dimension of spatial variable can influence the stability. Two examples are finally illustrated to demonstrate the effectiveness of our obtained results.


Author(s):  
Qianhong Zhang ◽  
Lihui Yang ◽  
Daixi Liao

Existence and exponential stability of a periodic solution for fuzzy cellular neural networks with time-varying delays Fuzzy cellular neural networks with time-varying delays are considered. Some sufficient conditions for the existence and exponential stability of periodic solutions are obtained by using the continuation theorem based on the coincidence degree and the differential inequality technique. The sufficient conditions are easy to use in pattern recognition and automatic control. Finally, an example is given to show the feasibility and effectiveness of our methods.


2011 ◽  
Vol 2011 ◽  
pp. 1-23
Author(s):  
R. Raja ◽  
R. Sakthivel ◽  
S. Marshal Anthoni

This paper deals with the stability analysis problem for a class of discrete-time stochastic BAM neural networks with discrete and distributed time-varying delays. By constructing a suitable Lyapunov-Krasovskii functional and employing M-matrix theory, we find some sufficient conditions ensuring the global exponential stability of the equilibrium point for stochastic BAM neural networks with time-varying delays. The conditions obtained here are expressed in terms of LMIs whose feasibility can be easily checked by MATLAB LMI Control toolbox. A numerical example is presented to show the effectiveness of the derived LMI-based stability conditions.


2011 ◽  
Vol 04 (04) ◽  
pp. 399-422 ◽  
Author(s):  
HAIBO GU ◽  
HAIJUN JIANG ◽  
ZHIDONG TENG

In this paper, the exponential stability analysis problem is considered for a class of impulsive recurrent cellular neural networks (IRCNNs) with time-varying delays. Without assuming the boundedness on the activation functions, some sufficient conditions are derived for checking the existence and exponential stability of periodic solution for this system by using Mawhin's continuation theorem of coincidence degree theory and constructing suitable Lyapunov functional. It is believed that these results are significant and useful for the design and applications of IRCNNs. Finally, an example with numerical simulation is given to show the effectiveness of the proposed method and results.


2009 ◽  
Vol 02 (03) ◽  
pp. 377-389
Author(s):  
JIANGHONG BAI ◽  
ZHIDONG TENG ◽  
HAIJUN JIANG

This paper is devoted to global exponential stability of reaction-diffusion time-varying delayed cellular neural networks with Dirichlet boundary conditions. Without assuming the monotonicity and differentiability of activation functions, nor symmetry of synaptic interconnection weights, the authors present some delay independent and easily verifiable sufficient conditions to ensure the global exponential stability of the equilibrium solution by using the method of variational parameter and inequality technique. These conditions obtained have important leading significance in the designs and applications of global exponential stability for reaction-diffusion neural circuit systems with delays. Lastly, one example is given to illustrate the theoretical analysis.


2011 ◽  
Vol 04 (01) ◽  
pp. 55-73
Author(s):  
SHUYUN NIU ◽  
HAIJUN JIANG ◽  
ZHIDONG TENG

In this paper, a class of nonautonomous fuzzy cellular neural networks (FCNNs) with reaction-diffusion terms and time-varying delays are investigated. By applying the inequality analysis technique, introducing ingeniously many real parameters and constructing new auxiliary functions, a series of new and useful criteria on the boundedness and globally exponential stability of solutions are established. The results obtained in this paper extend and improve the corresponding results given in previous works. Finally, two examples are given to verify the effectiveness of the obtained results.


2007 ◽  
Vol 17 (09) ◽  
pp. 3099-3108 ◽  
Author(s):  
QINGHUA ZHOU ◽  
LI WAN ◽  
JIANHUA SUN

Exponential stability of reaction–diffusion fuzzy recurrent neural networks (RDFRNNs) with time-varying delays are considered. By using the method of variational parameters, M-matrix properties and inequality technique, some delay-independent or delay-dependent sufficient conditions for guaranteeing the exponential stability of an equilibrium solution are obtained. One example is given to demonstrate the theoretical results.


Sign in / Sign up

Export Citation Format

Share Document