FURTHER RESULTS ON MASTER-SLAVE SYNCHRONIZATION OF GENERAL LUR'E SYSTEMS WITH TIME-VARYING DELAY

2008 ◽  
Vol 18 (01) ◽  
pp. 187-202 ◽  
Author(s):  
FERNANDO O. SOUZA ◽  
REINALDO M. PALHARES ◽  
EDUARDO M. A. M. MENDES ◽  
LEONARDO A. B. TÔRRES

In this paper, a new approach to analyze the asymptotic, exponential and robust stability of the master-slave synchronization for Lur'e systems using time-varying delay feedback control is proposed. The discussion is motivated by the problem of transmitting information in optical communication systems using chaotic lasers. The approach is based on the Lyapunov–Krasovskii stability theory for functional differential equations and the linear matrix inequality (LMI) technique with the use of a recent Leibniz–Newton model based transformation, without including any additional dynamics. Using the problem of synchronizing coupled Chua's circuits, three examples are given to illustrate the effectiveness of the proposed methodology.

2007 ◽  
Vol 17 (11) ◽  
pp. 4159-4166 ◽  
Author(s):  
HE HUANG ◽  
JINDE CAO

This paper deals with the master-slave synchronization problem of Lur'e systems based on time-varying delay feedback control. The time-varying delay is only assumed to be bounded. Delay-dependent conditions are derived such that the controlled slave system can track the master system. The synchronization criteria are expressed in terms of linear matrix inequality, which can be checked readily by using some standard numerical packages. A simulation example is provided to demonstrate the effectiveness of the proposed approach.


2012 ◽  
Vol 2012 ◽  
pp. 1-18
Author(s):  
W. Weera ◽  
P. Niamsup

This paper deals with the problem of stability for a class of Lur’e systems with interval time-varying delay and sector-bounded nonlinearity. The interval time-varying delay function is not assumed to be differentiable. We analyze the global exponential stability for uncertain neutral and Lur’e dynamical systems with some sector conditions. By constructing a set of improved Lyapunov-Krasovskii functional combined with Leibniz-Newton’s formula, we establish some stability criteria in terms of linear matrix inequalities. Numerical examples are given to illustrate the effectiveness of the results.


2013 ◽  
Vol 389 ◽  
pp. 471-476 ◽  
Author(s):  
Gang Guo ◽  
Su Ping Zhao

A new method is proposed for the delay-dependent stability control of fuzzy systems with time-varying delay. A new fuzzy Lyapunov-Krasovskii functional (LKF) is introduced to establish a delay-dependent stability criterion. Based on parallel distributed compensation (PDC) scheme, a stabilization condition is derived and the corresponding controller can be obtained by solving a set of linear matrix inequalities (LMIs).


2010 ◽  
Vol 2010 ◽  
pp. 1-15 ◽  
Author(s):  
Zhongkui Sun ◽  
Xiaoli Yang

Time delays are ubiquitous in real world and are often sources of complex behaviors of dynamical systems. This paper addresses the problem of parameters identification and synchronization of uncertain chaotic delayed systems subject to time-varying delay. Firstly, a novel and systematic adaptive scheme of synchronization is proposed for delayed dynamical systems containing uncertainties based on Razumikhin condition and extended invariance principle for functional differential equations. Then, the proposed adaptive scheme is used to estimate the unknown parameters of nonlinear delayed systems from time series, and a sufficient condition is given by virtue of this scheme. The delayed system under consideration is a very generic one that includes almost all well-known delayed systems (neural network, complex networks, etc.). Two classical examples are used to demonstrate the effectiveness of the proposed adaptive scheme.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Jiang Xu ◽  
Song Zheng

This paper investigates the problem of projective synchronization in drive-response dynamical networks (DRDNs) with time-varying delay and parameter mismatch via impulsive control. Owing to projective factor and parameter mismatch, complete projective synchronization cannot be achieved. Therefore, a weak projective synchronization scheme is proposed to ensure that the DRDNs are in a state of synchronization with an error level. Based on the stability analysis of the impulsive functional differential equations, a general method of the weak projective synchronization with the error level is derived in DRDNs. Numerical simulations are provided to verify the correctness and effectiveness of the proposed method and results.


2018 ◽  
Vol 30 (6) ◽  
pp. 965-970
Author(s):  
Peng Zhang ◽  
◽  
Pitao Wang ◽  
Tao Shen

This paper considers the absolute stability for Lur’e systems with time-varying delay and sector-bounded nonlinear. In this paper, a new relaxed condition based on delay decomposition approach is proposed. By using this technique and employing some inequality, the new delay-dependent stability criteria for Lur’e systems are derived in the form of linear matrix inequalities (LMIs). A numerical example is presented to show less conservatism of proposed methods compared with the previous.


2006 ◽  
Vol 16 (02) ◽  
pp. 281-294 ◽  
Author(s):  
HE HUANG ◽  
HAN-XIONG LI ◽  
JUE ZHONG

This paper deals with the problem of master-slave synchronization for uncertain Lur'e systems via time-varying delay feedback control. The parametric uncertainty is assumed to be norm bounded. Several new and sufficient conditions are presented such that the uncertain Lur'e master and slave systems are synchronous for all admissible uncertainties. These synchronization criteria are dependent on the size of time delay, which can be expressed by means of matrix inequalities. The adopted method is based on defining a new Lyapunov–Krasovskii function and using some inequalities techniques. Our results obtained here extend and improve some previously related results. Finally, two numerical examples are provided to demonstrate the applications of our proposed results.


Sign in / Sign up

Export Citation Format

Share Document