MASTER-SLAVE SYNCHRONIZATION OF LUR'E SYSTEMS BASED ON TIME-VARYING DELAY FEEDBACK CONTROL

2007 ◽  
Vol 17 (11) ◽  
pp. 4159-4166 ◽  
Author(s):  
HE HUANG ◽  
JINDE CAO

This paper deals with the master-slave synchronization problem of Lur'e systems based on time-varying delay feedback control. The time-varying delay is only assumed to be bounded. Delay-dependent conditions are derived such that the controlled slave system can track the master system. The synchronization criteria are expressed in terms of linear matrix inequality, which can be checked readily by using some standard numerical packages. A simulation example is provided to demonstrate the effectiveness of the proposed approach.

2008 ◽  
Vol 18 (01) ◽  
pp. 187-202 ◽  
Author(s):  
FERNANDO O. SOUZA ◽  
REINALDO M. PALHARES ◽  
EDUARDO M. A. M. MENDES ◽  
LEONARDO A. B. TÔRRES

In this paper, a new approach to analyze the asymptotic, exponential and robust stability of the master-slave synchronization for Lur'e systems using time-varying delay feedback control is proposed. The discussion is motivated by the problem of transmitting information in optical communication systems using chaotic lasers. The approach is based on the Lyapunov–Krasovskii stability theory for functional differential equations and the linear matrix inequality (LMI) technique with the use of a recent Leibniz–Newton model based transformation, without including any additional dynamics. Using the problem of synchronizing coupled Chua's circuits, three examples are given to illustrate the effectiveness of the proposed methodology.


2014 ◽  
Vol 2014 ◽  
pp. 1-11
Author(s):  
Guici Chen ◽  
Jianzhong Zhou ◽  
Yongchuan Zhang

The dissipative delay-feedback control problems for nonlinear stochastic delay systems (NSDSs) based on dissipativity analysis are studied in this paper. Based on the Lyapunov stability theory and stochastic analysis technique, both delay-independent and delay-dependent dissipativity criteria are established as linear matrix inequalities- (LMIs-) based feasibility tests. The obtained results in this paper for the nominal systems include the available results onH∞approach and passivity for stochastic delay systems as special cases. The delay-dependent feedback controller is designed by considering the relationship among the time-varying delay, its lower and upper bound, and its differential without ignoring any terms, which effectively reduces the conservative. A numerical example is given to illustrate the theoretical developments.


2018 ◽  
Vol 30 (6) ◽  
pp. 965-970
Author(s):  
Peng Zhang ◽  
◽  
Pitao Wang ◽  
Tao Shen

This paper considers the absolute stability for Lur’e systems with time-varying delay and sector-bounded nonlinear. In this paper, a new relaxed condition based on delay decomposition approach is proposed. By using this technique and employing some inequality, the new delay-dependent stability criteria for Lur’e systems are derived in the form of linear matrix inequalities (LMIs). A numerical example is presented to show less conservatism of proposed methods compared with the previous.


2015 ◽  
Vol 2015 ◽  
pp. 1-7 ◽  
Author(s):  
Wei Wang ◽  
Hong-Bing Zeng

This paper is focused on the absolute stability of Lur’e systems with time-varying delay. Based on the quadratic separation framework, a complete delay-decomposing Lyapunov-Krasovskii functional is constructed. By considering the relationship between the time-varying delay and its varying interval, improved delay-dependent absolute stability conditions in terms of linear matrix inequalities (LMIs) are obtained. Moreover, the derived conditions are extended to systems with time-varying structured uncertainties. Finally, a numerical example is given to show the advantage over existing literatures.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Lei Ding ◽  
Hong-Bing Zeng ◽  
Wei Wang ◽  
Fei Yu

This paper investigates the stability of static recurrent neural networks (SRNNs) with a time-varying delay. Based on the complete delay-decomposing approach and quadratic separation framework, a novel Lyapunov-Krasovskii functional is constructed. By employing a reciprocally convex technique to consider the relationship between the time-varying delay and its varying interval, some improved delay-dependent stability conditions are presented in terms of linear matrix inequalities (LMIs). Finally, a numerical example is provided to show the merits and the effectiveness of the proposed methods.


2012 ◽  
Vol 2012 ◽  
pp. 1-13 ◽  
Author(s):  
Tiejun Li ◽  
Junkang Tian

This paper is concerned with delay-dependent stability for continuous systems with two additive time-varying delay components. By constructing a new class of Lyapunov functional and using a new convex polyhedron method, a new delay-dependent stability criterion is derived in terms of linear matrix inequalities. The obtained stability criterion is less conservative than some existing ones. Finally, numerical examples are given to illustrate the effectiveness of the proposed method.


2012 ◽  
Vol 2012 ◽  
pp. 1-18
Author(s):  
W. Weera ◽  
P. Niamsup

This paper deals with the problem of stability for a class of Lur’e systems with interval time-varying delay and sector-bounded nonlinearity. The interval time-varying delay function is not assumed to be differentiable. We analyze the global exponential stability for uncertain neutral and Lur’e dynamical systems with some sector conditions. By constructing a set of improved Lyapunov-Krasovskii functional combined with Leibniz-Newton’s formula, we establish some stability criteria in terms of linear matrix inequalities. Numerical examples are given to illustrate the effectiveness of the results.


2012 ◽  
Vol 461 ◽  
pp. 633-636
Author(s):  
Cheng Wang

The problem of delay-dependent robust stability of uncertain stochastic systems with time-varying delay is discussed in this paper. Based on the Lyapunov-Krasovskii theory and free-weighting matrix technique, new delay-dependent stability criterion is presented. The criterion is in terms of linear matrix inequality (LMI) which can be solved by various available algorithms.


Sign in / Sign up

Export Citation Format

Share Document