MASTER-SLAVE SYNCHRONIZATION OF GENERAL LUR'E SYSTEMS WITH TIME-VARYING DELAY AND PARAMETER UNCERTAINTY

2006 ◽  
Vol 16 (02) ◽  
pp. 281-294 ◽  
Author(s):  
HE HUANG ◽  
HAN-XIONG LI ◽  
JUE ZHONG

This paper deals with the problem of master-slave synchronization for uncertain Lur'e systems via time-varying delay feedback control. The parametric uncertainty is assumed to be norm bounded. Several new and sufficient conditions are presented such that the uncertain Lur'e master and slave systems are synchronous for all admissible uncertainties. These synchronization criteria are dependent on the size of time delay, which can be expressed by means of matrix inequalities. The adopted method is based on defining a new Lyapunov–Krasovskii function and using some inequalities techniques. Our results obtained here extend and improve some previously related results. Finally, two numerical examples are provided to demonstrate the applications of our proposed results.

2015 ◽  
Vol 2015 ◽  
pp. 1-12 ◽  
Author(s):  
C. Emharuethai ◽  
P. Niamsup

H∞control problem for nonlinear system with time-varying delay is considered by using a set of improved Lyapunov-Krasovskii functionals including some integral terms, and a matrix-based on quadratic convex, combined with Wirtinger's inequalities and some useful integral inequality.H∞controller is designed via memoryless state feedback control and new sufficient conditions for the existence of theH∞state feedback for the system are given in terms of linear matrix inequalities (LMIs). Numerical examples are given to illustrate the effectiveness of the obtained result.


2012 ◽  
Vol 2012 ◽  
pp. 1-18
Author(s):  
W. Weera ◽  
P. Niamsup

This paper deals with the problem of stability for a class of Lur’e systems with interval time-varying delay and sector-bounded nonlinearity. The interval time-varying delay function is not assumed to be differentiable. We analyze the global exponential stability for uncertain neutral and Lur’e dynamical systems with some sector conditions. By constructing a set of improved Lyapunov-Krasovskii functional combined with Leibniz-Newton’s formula, we establish some stability criteria in terms of linear matrix inequalities. Numerical examples are given to illustrate the effectiveness of the results.


2015 ◽  
Vol 742 ◽  
pp. 399-403
Author(s):  
Ya Jun Li ◽  
Jing Zhao Li

This paper investigates the exponential stability problem for a class of stochastic neural networks with leakage delay. By employing a suitable Lyapunov functional and stochastic stability theory technic, the sufficient conditions which make the stochastic neural networks system exponential mean square stable are proposed and proved. All results are expressed in terms of linear matrix inequalities (LMIs). Example and simulation are presented to show the effectiveness of the proposed method.


2008 ◽  
Vol 18 (01) ◽  
pp. 187-202 ◽  
Author(s):  
FERNANDO O. SOUZA ◽  
REINALDO M. PALHARES ◽  
EDUARDO M. A. M. MENDES ◽  
LEONARDO A. B. TÔRRES

In this paper, a new approach to analyze the asymptotic, exponential and robust stability of the master-slave synchronization for Lur'e systems using time-varying delay feedback control is proposed. The discussion is motivated by the problem of transmitting information in optical communication systems using chaotic lasers. The approach is based on the Lyapunov–Krasovskii stability theory for functional differential equations and the linear matrix inequality (LMI) technique with the use of a recent Leibniz–Newton model based transformation, without including any additional dynamics. Using the problem of synchronizing coupled Chua's circuits, three examples are given to illustrate the effectiveness of the proposed methodology.


2021 ◽  
Vol 20 ◽  
pp. 88-97
Author(s):  
Mengying Ding ◽  
Yali Dong

This paper investigates the problem of robust H∞ observer-based control for a class of discrete-time nonlinear systems with time-varying delays and parameters uncertainties. We propose an observer-based controller. By constructing an appropriate Lyapunov-Krasovskii functional, some sufficient conditions are developed to ensure the closed-loop system is robust asymptotically stable with H∞ performance in terms of the linear matrix inequalities. Finally, a numerical example is given to illustrate the efficiency of proposed methods.


2007 ◽  
Vol 17 (11) ◽  
pp. 4159-4166 ◽  
Author(s):  
HE HUANG ◽  
JINDE CAO

This paper deals with the master-slave synchronization problem of Lur'e systems based on time-varying delay feedback control. The time-varying delay is only assumed to be bounded. Delay-dependent conditions are derived such that the controlled slave system can track the master system. The synchronization criteria are expressed in terms of linear matrix inequality, which can be checked readily by using some standard numerical packages. A simulation example is provided to demonstrate the effectiveness of the proposed approach.


2012 ◽  
Vol 482-484 ◽  
pp. 1881-1885
Author(s):  
Jian Hu Jiang ◽  
Chao Wu ◽  
Yun Wang Ge ◽  
Li Jun Song

The stability control problem is considered for a class of discrete-time T-S fuzzy bilinear system with time-varying delay in both state and input. Based on the parallel distribute compensation (PDC) scheme, some sufficient conditions are derived to guarantee the global asymptotically stability of the overall fuzzy system, which are represented in terms of matrix inequality. The corresponding controller can be obtained by solving a set of linear matrix inequalities. Finally, a simulation example shows that the approach is effective.


2018 ◽  
Vol 30 (6) ◽  
pp. 965-970
Author(s):  
Peng Zhang ◽  
◽  
Pitao Wang ◽  
Tao Shen

This paper considers the absolute stability for Lur’e systems with time-varying delay and sector-bounded nonlinear. In this paper, a new relaxed condition based on delay decomposition approach is proposed. By using this technique and employing some inequality, the new delay-dependent stability criteria for Lur’e systems are derived in the form of linear matrix inequalities (LMIs). A numerical example is presented to show less conservatism of proposed methods compared with the previous.


Sign in / Sign up

Export Citation Format

Share Document