DELAY-DEPENDENT ASYMPTOTIC STABILITY OF NEURAL NETWORKS WITH TIME-VARYING DELAYS

2008 ◽  
Vol 18 (01) ◽  
pp. 245-250 ◽  
Author(s):  
SHENGYUAN XU ◽  
JAMES LAM ◽  
DANIEL W. C. HO

This paper considers the problem of stability analysis for neural networks with time-varying delays. The time-varying delays under consideration are assumed to be bounded but not necessarily differentiable. In terms of a linear matrix inequality, a delay-dependent asymptotic stability condition is developed, which ensures the existence of a unique equilibrium point and its global asymptotic stability. The proposed stability condition is easy to check and less conservative. An example is provided to show the effectiveness of the proposed condition.

2011 ◽  
Vol 121-126 ◽  
pp. 1387-1391
Author(s):  
Guo Quan Liu ◽  
Simon X. Yang

The issue of asymptotic stability is discussed for generalized neutral-type neural networks with time-varying delays. A new stability condition is presented based on the Lyapunov-Krasovskii method and the inequality technique, which is dependent on the amount of delay. The proposed result is given in the form of a linear matrix inequality (LMI). Finally, an example is given to illustrate our result. This result is of great significance in designs and applications of globally stable of generalized neutral-type neural networks.


2010 ◽  
Vol 2010 ◽  
pp. 1-19 ◽  
Author(s):  
Qiankun Song ◽  
Jinde Cao

The problems on global dissipativity and global exponential dissipativity are investigated for uncertain discrete-time neural networks with time-varying delays and general activation functions. By constructing appropriate Lyapunov-Krasovskii functionals and employing linear matrix inequality technique, several new delay-dependent criteria for checking the global dissipativity and global exponential dissipativity of the addressed neural networks are established in linear matrix inequality (LMI), which can be checked numerically using the effective LMI toolbox in MATLAB. Illustrated examples are given to show the effectiveness of the proposed criteria. It is noteworthy that because neither model transformation nor free-weighting matrices are employed to deal with cross terms in the derivation of the dissipativity criteria, the obtained results are less conservative and more computationally efficient.


2007 ◽  
Vol 03 (01) ◽  
pp. 57-68 ◽  
Author(s):  
XU-YANG LOU ◽  
BAO-TONG CUI

The global robust asymptotic stability of bi-directional associative memory (BAM) neural networks with constant or time-varying delays is studied. An approach combining the Lyapunov-Krasovskii functional with the linear matrix inequality (LMI) is taken to study the problem. Some a criteria for the global robust asymptotic stability, which gives information on the delay-dependent property, are derived. Some illustrative examples are given to demonstrate the effectiveness of the obtained results.


2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
M. J. Park ◽  
O. M. Kwon ◽  
E. J. Cha

This paper deals with the problem of stability analysis for generalized neural networks with time-varying delays. With a suitable Lyapunov-Krasovskii functional (LKF) and Wirtinger-based integral inequality, sufficient conditions for guaranteeing the asymptotic stability of the concerned networks are derived in terms of linear matrix inequalities (LMIs). By applying the proposed methods to two numerical examples which have been utilized in many works for checking the conservatism of stability criteria, it is shown that the obtained results are significantly improved comparing with the previous ones published in other literature.


2008 ◽  
Vol 18 (03) ◽  
pp. 257-265 ◽  
Author(s):  
TAO LI ◽  
CHANGYIN SUN ◽  
XIANLIN ZHAO ◽  
CHONG LIN

The problem of the global asymptotic stability for a class of neural networks with time-varying delays is investigated in this paper, where the activation functions are assumed to be neither monotonic, nor differentiable, nor bounded. By constructing suitable Lyapunov functionals and combining with linear matrix inequality (LMI) technique, new global asymptotic stability criteria about different types of time-varying delays are obtained. It is shown that the criteria can provide less conservative result than some existing ones. Numerical examples are given to demonstrate the applicability of the proposed approach.


2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
Jun-kang Tian ◽  
Yan-min Liu

The problem of delay-dependent asymptotic stability analysis for neural networks with interval time-varying delays is considered based on the delay-partitioning method. Some less conservative stability criteria are established in terms of linear matrix inequalities (LMIs) by constructing a new Lyapunov-Krasovskii functional (LKF) in each subinterval and combining with reciprocally convex approach. Moreover, our criteria depend on both the upper and lower bounds on time-varying delay and its derivative, which is different from some existing ones. Finally, a numerical example is given to show the improved stability region of the proposed results.


2010 ◽  
Vol 139-141 ◽  
pp. 1714-1717
Author(s):  
Wen Guang Luo ◽  
Yong Hua Liu ◽  
Hong Li Lan

In this paper, the problem of global asymptotic stability in the mean square for stochastic fuzzy cellular neural networks (SFCNN) with time-varying delays is investigated. By constructing a newly proposed Lyapunov-Krasovskii function (LKF) and using Ito’s stochastic stability theory, a novel delay-dependent stability criterion is derived. The obtained stability result is helpful to design the stability of fuzzy cellular neural networks (FCNN) with time-varying delays when stochastic noise is taken into consideration. Since it is presented in terms of a linear matrix inequality (LMI), the sufficient condition is easy to be checked efficiently by utilizing some standard numerical packages such as the LMI Control Toolbox in Matlab. Finally, an illustrate example is given to verify the feasibility and usefulness of the proposed result.


2013 ◽  
Vol 330 ◽  
pp. 1045-1048 ◽  
Author(s):  
Grienggrai Rajchakit

This paper deals with the problem of delay-dependent stability criterion of discrete-time recurrent neural networks with time-varying delays. Based on quadratic Lyapunov functional approach and free-weighting matrix approach, some linear matrix inequality criteria are found to guarantee delay-dependent asymptotical stability of these systems. And one example illustrates the exactness of the proposed criteria.


2010 ◽  
Vol 24 (08) ◽  
pp. 775-789 ◽  
Author(s):  
O. M. KWON ◽  
S. M. LEE ◽  
JU H. PARK

In this paper, the problem of stability analysis of neural networks with discrete time-varying delays is considered. By constructing a new Lyapunov functional and some novel analysis techniques, new delay-dependent criteria for checking the asymptotic stability of the neural networks are established. The criteria are presented in terms of linear matrix inequalities, which can be easily solved and checked by various convex optimization algorithms. Three numerical examples are included to show the superiority of our results.


Sign in / Sign up

Export Citation Format

Share Document