DESIGN-ORIENTED BIFURCATION ANALYSIS OF POWER ELECTRONICS SYSTEMS

2011 ◽  
Vol 21 (06) ◽  
pp. 1523-1537 ◽  
Author(s):  
CHI K. TSE ◽  
MING LI

Bifurcation analysis has been applied to many power electronics circuits. Literature abounds with results regarding the various ways in which such circuits lose stability under variation of some selected parameters, e.g. via period-doubling bifurcation, Hopf bifurcation, border collision, etc. The current status of research in the identification of bifurcation behavior in power electronics has reached a stage where the salient types of bifurcation behavior, their underlying causes and the theoretical parameters affecting them have been well understood. Currently, the emphasis of research in this field has gradually shifted toward applications that are of direct relevance to practical design of power electronics. One direction is to apply some of the available research results in bifurcation behavior to the design of practical power electronics circuits. The main difficulty is that the abstract mathematical presentations of the available results are not directly applicable to practical design problems. In this paper we will discuss how research efforts may be directed to bridge this gap.

2015 ◽  
Vol 25 (09) ◽  
pp. 1550123 ◽  
Author(s):  
Nikhil Pal ◽  
Sudip Samanta ◽  
Santanu Biswas ◽  
Marwan Alquran ◽  
Kamel Al-Khaled ◽  
...  

In the present paper, we study the effect of gestation delay on a tri-trophic food chain model with Holling type-II functional response. The essential mathematical features of the proposed model are analyzed with the help of equilibrium analysis, stability analysis, and bifurcation theory. Considering time-delay as the bifurcation parameter, the Hopf-bifurcation analysis is carried out around the coexisting equilibrium. The direction of Hopf-bifurcation and the stability of the bifurcating periodic solutions are determined by applying the normal form theory and center manifold theorem. We observe that if the magnitude of the delay is increased, the system loses stability and shows limit cycle oscillations through Hopf-bifurcation. The system also shows the chaotic dynamics via period-doubling bifurcation for further enhancement of time-delay. Our analytical findings are illustrated through numerical simulations.


2018 ◽  
Vol 313 ◽  
pp. 306-315 ◽  
Author(s):  
Swati Tyagi ◽  
Subit K Jain ◽  
Syed Abbas ◽  
Shahlar Meherrem ◽  
Rajendra K Ray

2018 ◽  
Vol 28 (09) ◽  
pp. 1850109 ◽  
Author(s):  
Xiangming Zhang ◽  
Zhihua Liu

We make a mathematical analysis of an age structured HIV infection model with both virus-to-cell and cell-to-cell transmissions to understand the dynamical behavior of HIV infection in vivo. In the model, we consider the proliferation of uninfected CD[Formula: see text] T cells by a logistic function and the infected CD[Formula: see text] T cells are assumed to have an infection-age structure. Our main results concern the Hopf bifurcation of the model by using the theory of integrated semigroup and the Hopf bifurcation theory for semilinear equations with nondense domain. Bifurcation analysis indicates that there exist some parameter values such that this HIV infection model has a nontrivial periodic solution which bifurcates from the positive equilibrium. The numerical simulations are also carried out.


Sign in / Sign up

Export Citation Format

Share Document