scholarly journals Geometric Limits of Julia Sets of Maps zn + exp(2πiθ) as n → ∞

2015 ◽  
Vol 25 (08) ◽  
pp. 1530021 ◽  
Author(s):  
Scott R. Kaschner ◽  
Reaper Romero ◽  
David Simmons

We show that the geometric limit as n → ∞ of the Julia sets J(Pn,c) for the maps Pn,c(z) = zn + c does not exist for almost every c on the unit circle. Furthermore, we show that there is always a subsequence along which the limit does exist and equals the unit circle.

2012 ◽  
Vol 22 (12) ◽  
pp. 1250301 ◽  
Author(s):  
SUZANNE HRUSKA BOYD ◽  
MICHAEL J. SCHULZ

First, for the family Pn,c(z) = zn + c, we show that the geometric limit of the Mandelbrot sets Mn(P) as n → ∞ exists and is the closed unit disk, and that the geometric limit of the Julia sets J(Pn,c) as n tends to infinity is the unit circle, at least when |c| ≠ 1. Then, we establish similar results for some generalizations of this family; namely, the maps z ↦ zt + c for real t ≥ 2 and the rational maps z ↦ zn + c + a/zn.


2013 ◽  
Vol 35 (4) ◽  
pp. 1045-1055 ◽  
Author(s):  
ANDREW D. BARWELL ◽  
JONATHAN MEDDAUGH ◽  
BRIAN E. RAINES

AbstractIn this paper we consider quadratic polynomials on the complex plane${f}_{c} (z)= {z}^{2} + c$and their associated Julia sets,${J}_{c} $. Specifically, we consider the case that the kneading sequence is periodic and not an$n$-tupling. In this case${J}_{c} $contains subsets that are homeomorphic to the unit circle, usually infinitely many disjoint such subsets. We prove that${f}_{c} : {J}_{c} \rightarrow {J}_{c} $has shadowing, and we classify all$\omega $-limit sets for these maps by showing that a closed set$R\subseteq {J}_{c} $is internally chain transitive if, and only if, there is some$z\in {J}_{c} $with$\omega (z)= R$.


10.37236/1734 ◽  
2003 ◽  
Vol 10 (1) ◽  
Author(s):  
David Arthur

An arc-representation of a graph is a function mapping each vertex in the graph to an arc on the unit circle in such a way that adjacent vertices are mapped to intersecting arcs. The width of such a representation is the maximum number of arcs passing through a single point. The arc-width of a graph is defined to be the minimum width over all of its arc-representations. We extend the work of Barát and Hajnal on this subject and develop a generalization we call restricted arc-width. Our main results revolve around using this to bound arc-width from below and to examine the effect of several graph operations on arc-width. In particular, we completely describe the effect of disjoint unions and wedge sums while providing tight bounds on the effect of cones.


2020 ◽  
Vol 9 (9) ◽  
pp. 6759-6763
Author(s):  
G. Subathra ◽  
G. Jayalalitha
Keyword(s):  

Filomat ◽  
2017 ◽  
Vol 31 (11) ◽  
pp. 3507-3517
Author(s):  
Abhijit Pant ◽  
R.P. Pant ◽  
Kuldeep Prakash

The aim of the present paper is to study the dynamics of a class of orbitally continuous non-linear mappings defined on the set of real numbers and to apply the results on dynamics of functions to obtain tests of divisibility. We show that this class of mappings contains chaotic mappings. We also draw Julia sets of certain iterations related to multiple lowering mappings and employ the variations in the complexity of Julia sets to illustrate the results on the quotient and remainder. The notion of orbital continuity was introduced by Lj. B. Ciric and is an important tool in establishing existence of fixed points.


Symmetry ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1134
Author(s):  
Kenta Higuchi ◽  
Takashi Komatsu ◽  
Norio Konno ◽  
Hisashi Morioka ◽  
Etsuo Segawa

We consider the discrete-time quantum walk whose local dynamics is denoted by a common unitary matrix C at the perturbed region {0,1,⋯,M−1} and free at the other positions. We obtain the stationary state with a bounded initial state. The initial state is set so that the perturbed region receives the inflow ωn at time n(|ω|=1). From this expression, we compute the scattering on the surface of −1 and M and also compute the quantity how quantum walker accumulates in the perturbed region; namely, the energy of the quantum walk, in the long time limit. The frequency of the initial state of the influence to the energy is symmetric on the unit circle in the complex plain. We find a discontinuity of the energy with respect to the frequency of the inflow.


Energies ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1488
Author(s):  
Damian Trofimowicz ◽  
Tomasz P. Stefański

In this paper, novel methods for the evaluation of digital-filter stability are investigated. The methods are based on phase analysis of a complex function in the characteristic equation of a digital filter. It allows for evaluating stability when a characteristic equation is not based on a polynomial. The operation of these methods relies on sampling the unit circle on the complex plane and extracting the phase quadrant of a function value for each sample. By calculating function-phase quadrants, regions in the immediate vicinity of unstable roots (i.e., zeros), called candidate regions, are determined. In these regions, both real and imaginary parts of complex-function values change signs. Then, the candidate regions are explored. When the sizes of the candidate regions are reduced below an assumed accuracy, then filter instability is verified with the use of discrete Cauchy’s argument principle. Three different algorithms of the unit-circle sampling are benchmarked, i.e., global complex roots and poles finding (GRPF) algorithm, multimodal genetic algorithm with phase analysis (MGA-WPA), and multimodal particle swarm optimization with phase analysis (MPSO-WPA). The algorithms are compared in four benchmarks for integer- and fractional-order digital filters and systems. Each algorithm demonstrates slightly different properties. GRPF is very fast and efficient; however, it requires an initial number of nodes large enough to detect all the roots. MPSO-WPA prevents missing roots due to the usage of stochastic space exploration by subsequent swarms. MGA-WPA converges very effectively by generating a small number of individuals and by limiting the final population size. The conducted research leads to the conclusion that stochastic methods such as MGA-WPA and MPSO-WPA are more likely to detect system instability, especially when they are run multiple times. If the computing time is not vitally important for a user, MPSO-WPA is the right choice, because it significantly prevents missing roots.


2021 ◽  
Vol 15 (3) ◽  
Author(s):  
André C. M. Ran ◽  
Michał Wojtylak

AbstractGeneral properties of eigenvalues of $$A+\tau uv^*$$ A + τ u v ∗ as functions of $$\tau \in {\mathbb {C} }$$ τ ∈ C or $$\tau \in {\mathbb {R} }$$ τ ∈ R or $$\tau ={{\,\mathrm{{e}}\,}}^{{{\,\mathrm{{i}}\,}}\theta }$$ τ = e i θ on the unit circle are considered. In particular, the problem of existence of global analytic formulas for eigenvalues is addressed. Furthermore, the limits of eigenvalues with $$\tau \rightarrow \infty $$ τ → ∞ are discussed in detail. The following classes of matrices are considered: complex (without additional structure), real (without additional structure), complex H-selfadjoint and real J-Hamiltonian.


Sign in / Sign up

Export Citation Format

Share Document