scholarly journals GEOMETRIC LIMITS OF MANDELBROT AND JULIA SETS UNDER DEGREE GROWTH

2012 ◽  
Vol 22 (12) ◽  
pp. 1250301 ◽  
Author(s):  
SUZANNE HRUSKA BOYD ◽  
MICHAEL J. SCHULZ

First, for the family Pn,c(z) = zn + c, we show that the geometric limit of the Mandelbrot sets Mn(P) as n → ∞ exists and is the closed unit disk, and that the geometric limit of the Julia sets J(Pn,c) as n tends to infinity is the unit circle, at least when |c| ≠ 1. Then, we establish similar results for some generalizations of this family; namely, the maps z ↦ zt + c for real t ≥ 2 and the rational maps z ↦ zn + c + a/zn.


2008 ◽  
Vol 18 (10) ◽  
pp. 3175-3181 ◽  
Author(s):  
MARK MORABITO ◽  
ROBERT L. DEVANEY

In this paper, we consider the family of rational maps given by [Formula: see text] where n ≥ 2, and λ is a complex parameter. When λ = 0 the Julia set is the unit circle, as is well known. But as soon as λ is nonzero, the Julia set explodes. We show that, as λ tends to the origin along n - 1 special rays in the parameter plane, the Julia set of Fλ converges to the closed unit disk. This is somewhat unexpected, since it is also known that, if a Julia set contains an open set, it must be the entire Riemann sphere.



2013 ◽  
Vol 23 (02) ◽  
pp. 1330004 ◽  
Author(s):  
PAUL BLANCHARD ◽  
FİGEN ÇİLİNGİR ◽  
DANIEL CUZZOCREO ◽  
ROBERT L. DEVANEY ◽  
DANIEL M. LOOK ◽  
...  

In this paper, we consider the family of rational maps [Formula: see text] where n ≥ 2, d ≥ 1, and λ ∈ ℂ. We consider the case where λ lies in the main cardioid of one of the n - 1 principal Mandelbrot sets in these families. We show that the Julia sets of these maps are always homeomorphic. However, two such maps Fλ and Fμ are conjugate on these Julia sets only if the parameters at the centers of the given cardioids satisfy μ = νj(d+1)λ or [Formula: see text] where j ∈ ℤ and ν is an (n - 1)th root of unity. We define a dynamical invariant, which we call the minimal rotation number. It determines which of these maps are conjugate on their Julia sets, and we obtain an exact count of the number of distinct conjugacy classes of maps drawn from these main cardioids.



1998 ◽  
Vol 50 (3) ◽  
pp. 595-604 ◽  
Author(s):  
Donghan Luo ◽  
Thomas Macgregor

AbstractThis paper studies conditions on an analytic function that imply it belongs to Mα, the set of multipliers of the family of functions given by where μ is a complex Borel measure on the unit circle and α > 0. There are two main theorems. The first asserts that if 0 < α < 1 and sup. The second asserts that if 0 < α < 1, ƒ ∈ H∞ and supt. The conditions in these theorems are shown to relate to a number of smoothness conditions on the unit circle for a function analytic in the open unit disk and continuous in its closure.



2015 ◽  
Vol 25 (08) ◽  
pp. 1530021 ◽  
Author(s):  
Scott R. Kaschner ◽  
Reaper Romero ◽  
David Simmons

We show that the geometric limit as n → ∞ of the Julia sets J(Pn,c) for the maps Pn,c(z) = zn + c does not exist for almost every c on the unit circle. Furthermore, we show that there is always a subsequence along which the limit does exist and equals the unit circle.



1982 ◽  
Vol 86 ◽  
pp. 85-99
Author(s):  
Mitsuru Nakai ◽  
Toshimasa Tada

A density P on the punctured unit disk Ω:0 < |z| <1 is a 2-form P(z)dxdy whose coefficient P(z) is a real valued nonnegative locally Hölder continuous function on the closed punctured unit disk Ω:0< |z| <≦1. Here we consider Ω as an end of the punctured sphere 0 < |z| ≦ + + so that the point z = 0 is viewed as the ideal boundary δΣ of Σ and the unit circle |z| = 1 as the relative boundary δΣ of Σ. We denote by D = D(Σ) the family of densities on Σ.



Symmetry ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 91
Author(s):  
L. K. Mork ◽  
Keith Sullivan ◽  
Darin J. Ulness

Centered polygonal lacunary functions are a type of lacunary function that exhibit behaviors that set them apart from other lacunary functions, this includes rotational symmetry. This work will build off of earlier studies to incorporate the automorphism group of the open unit disk D, which is a subgroup of the Möbius transformations. The behavior, dimension, dynamics, and sensitivity of filled-in Julia sets and Mandelbrot sets to variables will be discussed in detail. Additionally, several visualizations of this three-dimensional parameter space will be presented.



2016 ◽  
Vol 37 (6) ◽  
pp. 1997-2016 ◽  
Author(s):  
YINGQING XIAO ◽  
FEI YANG

In this paper, we study the dynamics of the family of rational maps with two parameters $$\begin{eqnarray}f_{a,b}(z)=z^{n}+\frac{a^{2}}{z^{n}-b}+\frac{a^{2}}{b},\end{eqnarray}$$ where $n\geq 2$ and $a,b\in \mathbb{C}^{\ast }$. We give a characterization of the topological properties of the Julia set and the Fatou set of $f_{a,b}$ according to the dynamical behavior of the orbits of the free critical points.



1991 ◽  
Vol 14 (2) ◽  
pp. 221-226 ◽  
Author(s):  
John Gill

A basic theorem of iteration theory (Henrici [6]) states thatfanalytic on the interior of the closed unit diskDand continuous onDwithInt(D)f(D)carries any pointz ϵ Dto the unique fixed pointα ϵ Doff. That is to say,fn(z)→αasn→∞. In [3] and [5] the author generalized this result in the following way: LetFn(z):=f1∘…∘fn(z). Thenfn→funiformly onDimpliesFn(z)λ, a constant, for allz ϵ D. This kind of compositional structure is a generalization of a limit periodic continued fraction. This paper focuses on the convergence behavior of more general inner compositional structuresf1∘…∘fn(z)where thefj's are analytic onInt(D)and continuous onDwithInt(D)fj(D), but essentially random. Applications include analytic functions defined by this process.



2013 ◽  
pp. 239-245 ◽  
Author(s):  
ROBERT L. DEVANEY ◽  
ELIZABETH D. RUSSELL


Author(s):  
Abbas Kareem Wanas ◽  
Hala Abbas Mehdi

In this paper, by making use of the principle of strong subordination, we establish some interesting properties of multivalent analytic functions defined in the open unit disk and closed unit disk of the complex plane associated with Dziok-Srivastava operator.



Sign in / Sign up

Export Citation Format

Share Document