On the Inverse Problem of Competitive Modes and the Search for Chaotic Dynamics

2017 ◽  
Vol 27 (10) ◽  
pp. 1730032 ◽  
Author(s):  
Lewis Ruks ◽  
Robert A. Van Gorder

Generalized competitive modes (GCM) have been used as a diagnostic tool in order to analytically identify parameter regimes which may lead to chaotic trajectories in a given first order nonlinear dynamical system. The approach involves recasting the first order system as a second order nonlinear oscillator system, and then checking to see if certain conditions on the modes of these oscillators are satisfied. In the present paper, we will consider the inverse problem of GCM: If a system of second order oscillator equations satisfy the GCM conditions, can we then construct a first order dynamical system from it which admits chaotic trajectories? Solving the direct inverse problem is equivalent to finding solutions to an inhomogeneous form of the Euler equations. As there are no general solutions to this PDE system, we instead consider the problem for restricted classes of functions for autonomous systems which, upon obtaining the nonlinear oscillatory representation, we are able to extract at least two of the modes explicitly. We find that these methods often make finding chaotic regimes a much simpler task; many classes of parameter-function regimes that lead to nonchaos are excluded by the competitive mode conditions, and classical knowledge of dynamical systems then allows us to tune the free parameters or functions appropriately in order to obtain chaos. To find new hyperchaotic systems, a similar approach is used, but more effort and additional considerations are needed. These results demonstrate one method for constructing new chaotic or hyperchaotic systems.

2019 ◽  
Vol 29 (10) ◽  
pp. 1950141
Author(s):  
Siyuan Xing ◽  
Albert C. J. Luo

In this paper, the global sequential scenario of bifurcation trees of periodic motions to chaos is studied for a first-order, time-delayed, nonlinear dynamical system with periodic excitation. The periodic motions of such a first-order time-delayed system is obtained semi-analytically, and the corresponding stability and bifurcations are determined by eigenvalue analysis. A global sequential scenario of bifurcation trees is given by [Formula: see text] where [Formula: see text] is a global bifurcation tree of an asymmetric period-[Formula: see text] motion to chaos, and [Formula: see text] is a global bifurcation tree of a symmetric period-[Formula: see text] motion to chaos. Each bifurcation tree of a specific periodic motion to chaos is presented in detail. Numerical simulations of periodic motions are performed from analytical predictions. From finite Fourier series, harmonic amplitudes and phases for periodic motions are obtained for frequency analysis. Through this study, the rich dynamics of the first-order, time-delayed, nonlinear dynamical system is presented.


Author(s):  
Albert C. J. Luo ◽  
Yeyin Xu ◽  
Zhaobo Chen

In this paper, analytical solutions of periodic motions in the first-order nonlinear dynamical system are discussed from the finite Fourier series expression. The first-order nonlinear dynamical system is transformed to the dynamical system of coefficients in the Fourier series. From investigation of such dynamical system of coefficients, the analytical solutions of periodic motions are obtained, and the corresponding stability and bifurcation of periodic motions will be determined. In fact, this method provides a frequency-response analysis of periodic motions in nonlinear dynamical systems, which is alike the Laplace transformation of periodic motions for nonlinear dynamical systems. The harmonic frequency-amplitude curves are obtained for different-order harmonic terms in the Fourier series. Through such frequency-amplitude curves, the nonlinear characteristics of periodic motions in the first-order nonlinear system can be determined. From analytical solutions, the initial conditions are obtained for numerical simulations. From such initial conditions, numerical simulations are completed in comparison of the analytical solutions of periodic motions.


2020 ◽  
Vol 22 (4) ◽  
pp. 983-990
Author(s):  
Konrad Mnich

AbstractIn this work we analyze the behavior of a nonlinear dynamical system using a probabilistic approach. We focus on the coexistence of solutions and we check how the changes in the parameters of excitation influence the dynamics of the system. For the demonstration we use the Duffing oscillator with the tuned mass absorber. We mention the numerous attractors present in such a system and describe how they were found with the method based on the basin stability concept.


Sign in / Sign up

Export Citation Format

Share Document