Stability and Bifurcation Analysis in a Nonlinear Harvested Predator–Prey Model with Simplified Holling Type IV Functional Response

2020 ◽  
Vol 30 (14) ◽  
pp. 2050205
Author(s):  
Zuchong Shang ◽  
Yuanhua Qiao ◽  
Lijuan Duan ◽  
Jun Miao

In this paper, a type of predator–prey model with simplified Holling type IV functional response is improved by adding the nonlinear Michaelis–Menten type prey harvesting to explore the dynamics of the predator–prey system. Firstly, the conditions for the existence of different equilibria are analyzed, and the stability of possible equilibria is investigated to predict the final state of the system. Secondly, bifurcation behaviors of this system are explored, and it is found that saddle-node and transcritical bifurcations occur on the condition of some parameter values using Sotomayor’s theorem; the first Lyapunov constant is computed to determine the stability of the bifurcated limit cycle of Hopf bifurcation; repelling and attracting Bogdanov–Takens bifurcation of codimension 2 is explored by calculating the universal unfolding near the cusp based on two-parameter bifurcation analysis theorem, and hence there are different parameter values for which the model has a limit cycle, or a homoclinic loop; it is also predicted that the heteroclinic bifurcation may occur as the parameter values vary by analyzing the isoclinic of the improved system. Finally, numerical simulations are done to verify the theoretical analysis.

2016 ◽  
Vol 26 (02) ◽  
pp. 1650034 ◽  
Author(s):  
Jicai Huang ◽  
Xiaojing Xia ◽  
Xinan Zhang ◽  
Shigui Ruan

It was shown in [Li & Xiao, 2007] that in a predator–prey model of Leslie type with simplified Holling type IV functional response some complex bifurcations can occur simultaneously for some values of parameters, such as codimension 1 subcritical Hopf bifurcation and codimension 2 Bogdanov–Takens bifurcation. In this paper, we show that for the same model there exists a unique degenerate positive equilibrium which is a degenerate Bogdanov–Takens singularity (focus case) of codimension 3 for other values of parameters. We prove that the model exhibits degenerate focus type Bogdanov–Takens bifurcation of codimension 3 around the unique degenerate positive equilibrium. Numerical simulations, including the coexistence of three hyperbolic positive equilibria, two limit cycles, bistability states (one stable equilibrium and one stable limit cycle, or two stable equilibria), tristability states (two stable equilibria and one stable limit cycle), a stable limit cycle enclosing a homoclinic loop, a homoclinic loop enclosing an unstable limit cycle, or a stable limit cycle enclosing three unstable hyperbolic positive equilibria for various parameter values, confirm the theoretical results.


Author(s):  
A. M. Yousef ◽  
S. Z. Rida ◽  
Y. Gh. Gouda ◽  
A. S. Zaki

AbstractIn this paper, we investigate the dynamical behaviors of a fractional-order predator–prey with Holling type IV functional response and its discretized counterpart. First, we seek the local stability of equilibria for the fractional-order model. Also, the necessary and sufficient conditions of the stability of the discretized model are achieved. Bifurcation types (include transcritical, flip and Neimark–Sacker) and chaos are discussed in the discretized system. Finally, numerical simulations are executed to assure the validity of the obtained theoretical results.


2020 ◽  
Vol 505 ◽  
pp. 110419 ◽  
Author(s):  
Merlin C. Köhnke ◽  
Ivo Siekmann ◽  
Hiromi Seno ◽  
Horst Malchow

Sign in / Sign up

Export Citation Format

Share Document