Effect of a Mode of Update on Universality Class for Coupled Logistic Maps: Directed Ising to Ising Class

2021 ◽  
Vol 31 (03) ◽  
pp. 2150042
Author(s):  
Ankosh D. Deshmukh ◽  
Nitesh D. Shambharkar ◽  
Prashant M. Gade

Ising model at zero temperature leads to a ferromagnetic state asymptotically. There are two such possible states linked by symmetry, and Glauber–Ising dynamics are employed to reach them. In some stochastic or deterministic dynamical systems, the same absorbing state with [Formula: see text] symmetry is reached. This transition often belongs to the directed Ising (DI) class where dynamic exponents and persistence exponent are different. In asymmetrically coupled sequentially updated logistic maps, the transition belongs to the DI class. We study changes in the nature of transition with an update scheme. Even with the synchronous update, the transition still belongs to the DI class. We also study a synchronous probabilistic update scheme in which each site is updated with the probability [Formula: see text]. The order parameter decays with an exponent [Formula: see text] in this scheme. Nevertheless, the dynamic exponent [Formula: see text] is less than [Formula: see text] even for small values of [Formula: see text] indicating a very slow crossover to the Ising class. However, with a random asynchronous update, we recover [Formula: see text]. In the presence of feedback, synchronous update leads to a transition in the DI universality class which changes to Ising class for synchronous probabilistic update.

2021 ◽  
Vol 103 (5) ◽  
Author(s):  
Henrik Christiansen ◽  
Suman Majumder ◽  
Wolfhard Janke

2016 ◽  
Vol 30 (04) ◽  
pp. 1650022 ◽  
Author(s):  
Zeshun Chen ◽  
Changming Xiao ◽  
Zhen Yao

Supposing the Ising model system is placed in a temperature field with constant high and low temperatures on both sides, then the system will shift to a non-equilibrium steady state with a certain temperature gradient. With the assistance of local temperature, the steady state of two-dimensional Ising model is studied via the avenue of Monte Carlo simulations in this paper. It is found that the local energy and magnetization are continuous, but there is a sharp decline in the magnetization strength when the temperature falls into the range of 2.2–2.4. The local magnetization [Formula: see text], when the temperature [Formula: see text]. It is the indication that the system is in the ferromagnetic state. However, when [Formula: see text], [Formula: see text], and then the ferromagnetic state turns into the paramagnetic state. Furthermore, a completely new and special state of Ising model system and the corresponding material is possible if the high and low temperatures of the temperature field are larger and smaller than the critical value of the system, respectively. According to this material, the magnetic driving machine, from which a new energy source can be obtained, is qualitatively discussed at the end of this paper.


Sign in / Sign up

Export Citation Format

Share Document