Sliding Bifurcation in Planar Piecewise Smooth Systems with Two Zones Separated by an Ellipse

2021 ◽  
Vol 31 (15) ◽  
Author(s):  
Fang Wu ◽  
Lihong Huang ◽  
Jiafu Wang

The objective of this paper is to study the sliding bifurcation in a planar piecewise smooth system with an elliptic switching curve. Some new phenomena are observed, such as a crossing limit cycle containing four intersections with the switching curve, sliding cycles having four sliding segments, and sliding cycles consisting of the entire switching curve. Firstly, we investigate the bifurcation of sliding cycle from a sliding heteroclinic connection to two cusps and show the appearance of one sliding cycle with two folds. To plot the bifurcation diagram, a planar piecewise linear system with two zones separated by an ellipse are considered. Moreover, we study in more detail the unfolding of a sliding cycle connecting four cusps by exhibiting its complete bifurcation diagram. More precisely, we explore the necessary and sufficient conditions for the existence of limit cycles and derive the concrete bifurcation curves. Additionally, a simple piecewise smooth system with nonlinear subsystems is studied, which shows the possibility of the existence of two nested limit cycles. Finally, numerical simulations are given to confirm the theoretical analysis.

2019 ◽  
Vol 29 (12) ◽  
pp. 1950160
Author(s):  
Zhihui Fan ◽  
Zhengdong Du

In this paper, we discuss the bifurcation of periodic orbits in planar piecewise smooth systems with discontinuities on finitely many smooth curves intersecting at the origin. We assume that the unperturbed system has either a limit cycle or a periodic annulus such that the limit cycle or each periodic orbit in the periodic annulus crosses every switching curve transversally multiple times. When the unperturbed system has a limit cycle, we give the conditions for its stability and persistence. When the unperturbed system has a periodic annulus, we obtain the expression of the first order Melnikov function and establish sufficient conditions under which limit cycles can bifurcate from the annulus. As an example, we construct a concrete nonlinear planar piecewise smooth system with three zones with 11 limit cycles bifurcated from the periodic annulus.


2021 ◽  
Vol 31 (15) ◽  
Author(s):  
Zhongjian Wang ◽  
Dingheng Pi

In this paper, we study bifurcations of the regularized systems of planar piecewise smooth systems, which have a visible fold-regular point and a sliding or grazing heteroclinic loop. Our results show that if the planar piecewise smooth system with a sliding heteroclinic loop undergoes sliding heteroclinic bifurcation, then the regularized system can bifurcate with a stable limit cycle passing through the regularized region and at most two limit cycles outside the regularized region. The regularized system can have at most three periodic orbits. When the upper subsystem is a Hamiltonian system, the regularized system can bifurcate with a semi-stable periodic orbit. Finally, we discuss two cases when the heteroclinic loop of a piecewise smooth system remains unbroken under a small perturbation. Our results show that the regularized system can bifurcate at most two limit cycles from an inner unstable grazing heteroclinic loop.


2021 ◽  
Vol 31 (10) ◽  
pp. 2150159
Author(s):  
Ai Ke ◽  
Maoan Han

We study bifurcations of limit cycles arising after perturbations of a special piecewise smooth system, which has a center and a homoclinic loop. By using the Picard–Fuchs equation, we give an upper bound of the maximum number of limit cycles bifurcated from the period annulus between the center and the homoclinic loop. Furthermore, by applying the method of first-order Melnikov function we obtain a lower bound of the maximum number of limit cycles bifurcated from the center.


Author(s):  
S. Jelbart ◽  
K. U. Kristiansen ◽  
P. Szmolyan ◽  
M. Wechselberger

AbstractSingular exponential nonlinearities of the form $$e^{h(x)\epsilon ^{-1}}$$ e h ( x ) ϵ - 1 with $$\epsilon >0$$ ϵ > 0 small occur in many different applications. These terms have essential singularities for $$\epsilon =0$$ ϵ = 0 leading to very different behaviour depending on the sign of h. In this paper, we consider two prototypical singularly perturbed oscillators with such exponential nonlinearities. We apply a suitable normalization for both systems such that the $$\epsilon \rightarrow 0$$ ϵ → 0 limit is a piecewise smooth system. The convergence to this nonsmooth system is exponential due to the nonlinearities we study. By working on the two model systems we use a blow-up approach to demonstrate that this exponential convergence can be harmless in some cases while in other scenarios it can lead to further degeneracies. For our second model system, we deal with such degeneracies due to exponentially small terms by extending the space dimension, following the approach in Kristiansen (Nonlinearity 30(5): 2138–2184, 2017), and prove—for both systems—existence of (unique) limit cycles by perturbing away from singular cycles having desirable hyperbolicity properties.


2017 ◽  
Vol 27 (12) ◽  
pp. 1730042 ◽  
Author(s):  
David J. W. Simpson

As the parameters of a piecewise-smooth system of ODEs are varied, a periodic orbit undergoes a bifurcation when it collides with a surface where the system is discontinuous. Under certain conditions this is a grazing-sliding bifurcation. Near grazing-sliding bifurcations, structurally stable dynamics are captured by piecewise-linear continuous maps. Recently it was shown that maps of this class can have infinitely many asymptotically stable periodic solutions of a simple type. Here this result is used to show that at a grazing-sliding bifurcation an asymptotically stable periodic orbit can bifurcate into infinitely many asymptotically stable periodic orbits. For an abstract ODE system the periodic orbits are continued numerically revealing subsequent bifurcations at which they are destroyed.


2018 ◽  
Vol 18 (1) ◽  
pp. 315-332
Author(s):  
J.-P. Françoise ◽  
Hongjun Ji ◽  
Dongmei Xiao ◽  
Jiang Yu

Sign in / Sign up

Export Citation Format

Share Document