scholarly journals BIFURCATIONS AND CHAOS IN A PERIODIC PREDATOR-PREY MODEL

1992 ◽  
Vol 02 (01) ◽  
pp. 117-128 ◽  
Author(s):  
YU.A. KUZNETSOV ◽  
S. MURATORI ◽  
S. RINALDI

The model most often used by ecologists to describe interactions between predator and prey populations is analyzed in this paper with reference to the case of periodically varying parameters. A complete bifurcation diagram for periodic solutions of period one and two is obtained by means of a continuation technique. The results perfectly agree with the local theory of periodically forced Hopf bifurcation. The two classical routes to chaos, i.e., cascade of period doublings and torus destruction, are numerically detected.

2019 ◽  
Vol 29 (04) ◽  
pp. 1950055
Author(s):  
Fengrong Zhang ◽  
Yan Li ◽  
Changpin Li

In this paper, we consider a delayed diffusive predator–prey model with Leslie–Gower term and herd behavior subject to Neumann boundary conditions. We are mainly concerned with the impact of time delay on the stability of this model. First, for delayed differential equations and delayed-diffusive differential equations, the stability of the positive equilibrium and the existence of Hopf bifurcation are investigated respectively. It is observed that when time delay continues to increase and crosses through some critical values, a family of homogeneous and inhomogeneous periodic solutions emerge. Then, the explicit formula for determining the stability and direction of bifurcating periodic solutions are also derived by employing the normal form theory and center manifold theorem for partial functional differential equations. Finally, some numerical simulations are shown to support the analytical results.


2020 ◽  
Vol 25 (1) ◽  
Author(s):  
Yan Li ◽  
Sanyun Li ◽  
Fengrong Zhang

This paper is devoted to considering a diffusive predator–prey model with Leslie–Gower term and herd behavior subject to the homogeneous Neumann boundary conditions. Concretely, by choosing the proper bifurcation parameter, the local stability of constant equilibria of this model without diffusion and the existence of Hopf bifurcation are investigated by analyzing the distribution of the eigenvalues. Furthermore, the explicit formula for determining the direction of Hopf bifurcation and the stability of the bifurcating periodic solutions are also derived by applying the normal form theory. Next, we show the stability of positive constant equilibrium, the existence and stability of periodic solutions near positive constant equilibrium for the diffusive model. Finally, some numerical simulations are carried out to support the analytical results.


2019 ◽  
Vol 29 (04) ◽  
pp. 1950043 ◽  
Author(s):  
Shanshan Chen ◽  
Junjie Wei ◽  
Kaiqi Yang

The diffusive Holling–Tanner predator–prey model with no-flux boundary conditions and nonlocal prey competition is considered in this paper. We show the existence of spatially nonhomogeneous periodic solutions, which is induced by nonlocal prey competition. In particular, the constant positive steady state may lose the stability through Hopf bifurcation when the given parameter passes through some critical values, and the bifurcating periodic solutions near such values could be spatially nonhomogeneous and orbitally asymptotically stable.


2015 ◽  
Vol 25 (11) ◽  
pp. 1550155 ◽  
Author(s):  
Chaoqun Xu ◽  
Sanling Yuan

A delayed diffusive predator–prey model with herd behavior subject to Neumann boundary conditions is studied both theoretically and numerically. Applying Hopf bifurcation analysis, we obtain the critical conditions under which the model generates spatially nonhomogeneous bifurcating periodic solutions. It is shown that the spatially homogeneous Hopf bifurcations always exist and that the spatially nonhomogeneous Hopf bifurcations will arise when the diffusion coefficients are suitably small. The explicit formulae for determining the direction of Hopf bifurcation and the stability of the bifurcating periodic solutions are derived by employing the normal form theory and center manifold theorems for partial functional differential equations.


2019 ◽  
Vol 74 (7) ◽  
pp. 581-595 ◽  
Author(s):  
Saheb Pal ◽  
Subrata Majhi ◽  
Sutapa Mandal ◽  
Nikhil Pal

AbstractIn the present article, we investigate the impact of fear effect in a predator–prey model, where predator–prey interaction follows Beddington–DeAngelis functional response. We consider that due to fear of predator the birth rate of prey population reduces. Mathematical properties, such as persistence, equilibria analysis, local and global stability analysis, and bifurcation analysis, have been investigated. We observe that an increase in the cost of fear destabilizes the system and produces periodic solutions via supercritical Hopf bifurcation. However, with further increase in the strength of fear, system undergoes another Hopf bifurcation and becomes stable. The stability of the Hopf-bifurcating periodic solutions is obtained by computing the first Lyapunov coefficient. Our results suggest that fear of predation risk can have both stabilizing and destabilizing effects.


2019 ◽  
Vol 29 (11) ◽  
pp. 1950152
Author(s):  
Qiannan Song ◽  
Ruizhi Yang ◽  
Chunrui Zhang ◽  
Leiyu Tang

In this paper, we consider a diffusive predator–prey model with Monod–Haldane functional response. We study the Turing instability and Hopf bifurcation of the coexisting equilibriums. We investigate the Turing–Hopf bifurcation through some key bifurcation parameters. In addition, we obtain a normal form for the Turing–Hopf bifurcation. Finally, we show numerical simulations to illustrate the theoretical results. For parameters around the critical value of the Turing–Hopf bifurcation, we demonstrate that the predator–prey model exhibits complex spatiotemporal dynamics, including spatially homogeneous periodic solutions, spatially inhomogeneous periodic solutions, and spatially inhomogeneous steady-state solutions.


Symmetry ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 785
Author(s):  
Hasan S. Panigoro ◽  
Agus Suryanto ◽  
Wuryansari Muharini Kusumawinahyu ◽  
Isnani Darti

In this paper, we consider a fractional-order eco-epidemic model based on the Rosenzweig–MacArthur predator–prey model. The model is derived by assuming that the prey may be infected by a disease. In order to take the memory effect into account, we apply two fractional differential operators, namely the Caputo fractional derivative (operator with power-law kernel) and the Atangana–Baleanu fractional derivative in the Caputo (ABC) sense (operator with Mittag–Leffler kernel). We take the same order of the fractional derivative in all equations for both senses to maintain the symmetry aspect. The existence and uniqueness of solutions of both eco-epidemic models (i.e., in the Caputo sense and in ABC sense) are established. Both models have the same equilibrium points, namely the trivial (origin) equilibrium point, the extinction of infected prey and predator point, the infected prey free point, the predator-free point and the co-existence point. For a model in the Caputo sense, we also show the non-negativity and boundedness of solution, perform the local and global stability analysis and establish the conditions for the existence of Hopf bifurcation. It is found that the trivial equilibrium point is a saddle point while other equilibrium points are conditionally asymptotically stable. The numerical simulations show that the solutions of the model in the Caputo sense strongly agree with analytical results. Furthermore, it is indicated numerically that the model in the ABC sense has quite similar dynamics as the model in the Caputo sense. The essential difference between the two models is the convergence rate to reach the stable equilibrium point. When a Hopf bifurcation occurs, the bifurcation points and the diameter of the limit cycles of both models are different. Moreover, we also observe a bistability phenomenon which disappears via Hopf bifurcation.


2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Heping Jiang ◽  
Huiping Fang ◽  
Yongfeng Wu

Abstract This paper mainly aims to consider the dynamical behaviors of a diffusive delayed predator–prey system with Smith growth and herd behavior subject to the homogeneous Neumann boundary condition. For the analysis of the predator–prey model, we have studied the existence of Hopf bifurcation by analyzing the distribution of the roots of associated characteristic equation. Then we have proved the stability of the periodic solution by calculating the normal form on the center of manifold which is associated to the Hopf bifurcation points. Some numerical simulations are also carried out in order to validate our analysis findings. The implications of our analytical and numerical findings are discussed critically.


Sign in / Sign up

Export Citation Format

Share Document