NEAREST NEIGHBOR PROBLEMS

1992 ◽  
Vol 02 (04) ◽  
pp. 383-416 ◽  
Author(s):  
GORDON WILFONG

Suppose E is a set of labeled points (examples) in some metric space. A subset C of E is said to be a consistent subset ofE if it has the property that for any example e∈E, the label of the closest example in C to e is the same as the label of e. We consider the problem of computing a minimum cardinality consistent subset. Consistent subsets have applications in pattern classification schemes that are based on the nearest neighbor rule. The idea is to replace the training set of examples with as small a consistent subset as possible so as to improve the efficiency of the system while not significantly affecting its accuracy. The problem of finding a minimum size consistent subset of a set of examples is shown to be NP-complete. A special case is described and is shown to be equivalent to an optimal disc cover problem. A polynomial time algorithm for this optimal disc cover problem is then given.

Algorithms ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 110
Author(s):  
David Schaller ◽  
Manuela Geiß ◽  
Marc Hellmuth ◽  
Peter F. Stadler

Best match graphs (BMGs) are vertex-colored digraphs that naturally arise in mathematical phylogenetics to formalize the notion of evolutionary closest genes w.r.t. an a priori unknown phylogenetic tree. BMGs are explained by unique least resolved trees. We prove that the property of a rooted, leaf-colored tree to be least resolved for some BMG is preserved by the contraction of inner edges. For the special case of two-colored BMGs, this leads to a characterization of the least resolved trees (LRTs) of binary-explainable trees and a simple, polynomial-time algorithm for the minimum cardinality completion of the arc set of a BMG to reach a BMG that can be explained by a binary tree.


Algorithmica ◽  
2021 ◽  
Author(s):  
Édouard Bonnet ◽  
Nidhi Purohit

AbstractA resolving set S of a graph G is a subset of its vertices such that no two vertices of G have the same distance vector to S. The Metric Dimension problem asks for a resolving set of minimum size, and in its decision form, a resolving set of size at most some specified integer. This problem is NP-complete, and remains so in very restricted classes of graphs. It is also W[2]-complete with respect to the size of the solution. Metric Dimension has proven elusive on graphs of bounded treewidth. On the algorithmic side, a polynomial time algorithm is known for trees, and even for outerplanar graphs, but the general case of treewidth at most two is open. On the complexity side, no parameterized hardness is known. This has led several papers on the topic to ask for the parameterized complexity of Metric Dimension with respect to treewidth. We provide a first answer to the question. We show that Metric Dimension parameterized by the treewidth of the input graph is W[1]-hard. More refinedly we prove that, unless the Exponential Time Hypothesis fails, there is no algorithm solving Metric Dimension in time $$f(\text {pw})n^{o(\text {pw})}$$ f ( pw ) n o ( pw ) on n-vertex graphs of constant degree, with $$\text {pw}$$ pw the pathwidth of the input graph, and f any computable function. This is in stark contrast with an FPT algorithm of Belmonte et al. (SIAM J Discrete Math 31(2):1217–1243, 2017) with respect to the combined parameter $$\text {tl}+\Delta$$ tl + Δ , where $$\text {tl}$$ tl is the tree-length and $$\Delta$$ Δ the maximum-degree of the input graph.


Author(s):  
Mohsen Alambardar Meybodi

A set [Formula: see text] of a graph [Formula: see text] is called an efficient dominating set of [Formula: see text] if every vertex [Formula: see text] has exactly one neighbor in [Formula: see text], in other words, the vertex set [Formula: see text] is partitioned to some circles with radius one such that the vertices in [Formula: see text] are the centers of partitions. A generalization of this concept, introduced by Chellali et al. [k-Efficient partitions of graphs, Commun. Comb. Optim. 4 (2019) 109–122], is called [Formula: see text]-efficient dominating set that briefly partitions the vertices of graph with different radiuses. It leads to a partition set [Formula: see text] such that each [Formula: see text] consists a center vertex [Formula: see text] and all the vertices in distance [Formula: see text], where [Formula: see text]. In other words, there exist the dominators with various dominating powers. The problem of finding minimum set [Formula: see text] is called the minimum [Formula: see text]-efficient domination problem. Given a positive integer [Formula: see text] and a graph [Formula: see text], the [Formula: see text]-efficient Domination Decision problem is to decide whether [Formula: see text] has a [Formula: see text]-efficient dominating set of cardinality at most [Formula: see text]. The [Formula: see text]-efficient Domination Decision problem is known to be NP-complete even for bipartite graphs [M. Chellali, T. W. Haynes and S. Hedetniemi, k-Efficient partitions of graphs, Commun. Comb. Optim. 4 (2019) 109–122]. Clearly, every graph has a [Formula: see text]-efficient dominating set but it is not correct for efficient dominating set. In this paper, we study the following: [Formula: see text]-efficient domination problem set is NP-complete even in chordal graphs. A polynomial-time algorithm for [Formula: see text]-efficient domination in trees. [Formula: see text]-efficient domination on sparse graphs from the parametrized complexity perspective. In particular, we show that it is [Formula: see text]-hard on d-degenerate graphs while the original dominating set has Fixed Parameter Tractable (FPT) algorithm on d-degenerate graphs. [Formula: see text]-efficient domination on nowhere-dense graphs is FPT.


2020 ◽  
Vol 92 (1) ◽  
pp. 107-132 ◽  
Author(s):  
Britta Schulze ◽  
Michael Stiglmayr ◽  
Luís Paquete ◽  
Carlos M. Fonseca ◽  
David Willems ◽  
...  

Abstract In this article, we introduce the rectangular knapsack problem as a special case of the quadratic knapsack problem consisting in the maximization of the product of two separate knapsack profits subject to a cardinality constraint. We propose a polynomial time algorithm for this problem that provides a constant approximation ratio of 4.5. Our experimental results on a large number of artificially generated problem instances show that the average ratio is far from theoretical guarantee. In addition, we suggest refined versions of this approximation algorithm with the same time complexity and approximation ratio that lead to even better experimental results.


2011 ◽  
Vol 21 (01) ◽  
pp. 87-100
Author(s):  
GREG ALOUPIS ◽  
PROSENJIT BOSE ◽  
ERIK D. DEMAINE ◽  
STEFAN LANGERMAN ◽  
HENK MEIJER ◽  
...  

Given a planar polygon (or chain) with a list of edges {e1, e2, e3, …, en-1, en}, we examine the effect of several operations that permute this edge list, resulting in the formation of a new polygon. The main operations that we consider are: reversals which involve inverting the order of a sublist, transpositions which involve interchanging subchains (sublists), and edge-swaps which are a special case and involve interchanging two consecutive edges. When each edge of the given polygon has also been assigned a direction we say that the polygon is signed. In this case any edge involved in a reversal changes direction. We show that a star-shaped polygon can be convexified using O(n2) edge-swaps, while maintaining simplicity, and that this is tight in the worst case. We show that determining whether a signed polygon P can be transformed to one that has rotational or mirror symmetry with P, using transpositions, takes Θ(n log n) time. We prove that the problem of deciding whether transpositions can modify a polygon to fit inside a rectangle is weakly NP-complete. Finally we give an O(n log n) time algorithm to compute the maximum endpoint distance for an oriented chain.


10.37236/104 ◽  
2009 ◽  
Vol 16 (1) ◽  
Author(s):  
E. R. Vaughan

Gerechte designs are a specialisation of latin squares. A gerechte design is an $n\times n$ array containing the symbols $\{1,\dots,n\}$, together with a partition of the cells of the array into $n$ regions of $n$ cells each. The entries in the cells are required to be such that each row, column and region contains each symbol exactly once. We show that the problem of deciding if a gerechte design exists for a given partition of the cells is NP-complete. It follows that there is no polynomial time algorithm for finding gerechte designs with specified partitions unless P=NP.


10.37236/3388 ◽  
2014 ◽  
Vol 21 (2) ◽  
Author(s):  
Katharina T. Huber ◽  
Mike Steel

It is a classical result that any finite tree with positively weighted edges, and without vertices of degree 2, is uniquely determined by the weighted path distance between each pair of leaves. Moreover, it is possible for a (small) strict subset $\mathcal{L}$ of leaf pairs to suffice for reconstructing the tree and its edge weights, given just the distances between the leaf pairs in $\mathcal{L}$. It is known that any set ${\mathcal L}$ with this property for a tree in which all interior vertices have degree 3 must form a cover  for $T$ - that is, for each interior vertex $v$ of $T$, ${\mathcal L}$ must contain a pair of leaves from each pair of the three components of  $T-v$.  Here we provide a partial converse of this result by showing that if a set ${\mathcal L}$ of leaf pairs forms a cover  of a certain type for such a tree $T$ then $T$ and its edge weights can be uniquely determined from the distances between the pairs of leaves in ${\mathcal L}$. Moreover,  there is a polynomial-time algorithm for achieving this reconstruction. The result establishes a special case of a recent question concerning 'triplet covers', and is relevant to a problem arising in evolutionary genomics.


2021 ◽  
Author(s):  
Yasaman KalantarMotamedi

P vs NP is one of the open and most important mathematics/computer science questions that has not been answered since it was raised in 1971 despite its importance and a quest for a solution since 2000. P vs NP is a class of problems that no polynomial time algorithm exists for any. If any of the problems in the class gets solved in polynomial time, all can be solved as the problems are translatable to each other. One of the famous problems of this kind is Hamiltonian cycle. Here we propose a polynomial time algorithm with rigorous proof that it always finds a solution if there exists one. It is expected that this solution would address all problems in the class and have a major impact in diverse fields including computer science, engineering, biology, and cryptography.


Author(s):  
Naser T Sardari

Abstract By assuming some widely believed arithmetic conjectures, we show that the task of accepting a number that is representable as a sum of $d\geq 2$ squares subjected to given congruence conditions is NP-complete. On the other hand, we develop and implement a deterministic polynomial-time algorithm that represents a number as a sum of four squares with some restricted congruence conditions, by assuming a polynomial-time algorithm for factoring integers and Conjecture 1.1. As an application, we develop and implement a deterministic polynomial-time algorithm for navigating Lubotzky, Phillips, Sarnak (LPS) Ramanujan graphs, under the same assumptions.


Sign in / Sign up

Export Citation Format

Share Document