scholarly journals GROUPS WITH QUADRATIC-NON-QUADRATIC DEHN FUNCTIONS

2007 ◽  
Vol 17 (02) ◽  
pp. 401-419 ◽  
Author(s):  
ALEXANDER YU. OL'SHANSKII

We construct a finitely presented group G with non-quadratic Dehn function f majorizable by a quadratic function on arbitrary long intervals.

2018 ◽  
Vol 28 (07) ◽  
pp. 1299-1381
Author(s):  
W. Dison ◽  
E. Einstein ◽  
T. R. Riley

For a finitely presented group, the word problem asks for an algorithm which declares whether or not words on the generators represent the identity. The Dehn function is a complexity measure of a direct attack on the word problem by applying the defining relations. Dison and Riley showed that a “hydra phenomenon” gives rise to novel groups with extremely fast growing (Ackermannian) Dehn functions. Here, we show that nevertheless, there are efficient (polynomial time) solutions to the word problems of these groups. Our main innovation is a means of computing efficiently with enormous integers which are represented in compressed forms by strings of Ackermann functions.


1998 ◽  
Vol 58 (3) ◽  
pp. 453-464 ◽  
Author(s):  
Stephen G. Brick ◽  
Jon M. Corson

For a finite presentation of a group, or more generally, a two-complex, we define a function analogous to the Dehn function that we call the annular Dehn function. This function measures the combinatorial area of maps of annuli into the complex as a function of the lengths of the boundary curves. A finitely presented group has solvable conjugacy problem if and only if its annular Dehn function is recursive.As with standard Dehn functions, the annular Dehn function may change with change of presentation. We prove that the type of function obtained is preserved by change of presentation. Further we obtain upper bounds for the annular Dehn functions of free products and, more generally, amalgamations or HNN extensions over finite subgroups.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Wenhao Wang

Abstract In this paper, we compute an upper bound for the Dehn function of a finitely presented metabelian group. In addition, we prove that the same upper bound works for the relative Dehn function of a finitely generated metabelian group. We also show that every wreath product of a free abelian group of finite rank with a finitely generated abelian group can be embedded into a metabelian group with exponential Dehn function.


2020 ◽  
Vol 10 (01) ◽  
pp. 1950023 ◽  
Author(s):  
A. Yu. Olshanskii ◽  
M. V. Sapir

We construct a finitely presented group with quadratic Dehn function and undecidable conjugacy problem. This solves Rips’ problem formulated in 1994.


Author(s):  
George Havas ◽  
Derek F. Holt ◽  
P. E. Kenne ◽  
Sarah Rees

AbstractWe study some challenging presentations which arise as groups of deficiency zero. In four cases we settle finiteness: we show that two presentations are for finite groups while two are for infinite groups. Thus we answer three explicit questions in the literature and we provide the first published deficiency zero presentation for a group with derived length seven. The tools we use are coset enumeration and Knuth-Bebdix rewriting, which are well-established as methods for proving finiteness or otherwise of a finitely presented group. We briefly comment on their capabilities and compare their performance.


1974 ◽  
Vol 26 (4) ◽  
pp. 769-782 ◽  
Author(s):  
Anke Dietze ◽  
Mary Schaps

The use of computers to investigate groups has mainly been restricted to finite groups. In this work, a method is given for finding all subgroups of finite index in a given group, which works equally well for finite and for infinite groups. The basic object of study is the finite set of cosets. §2 reviews briefly the representation of a subgroup by permutations of its cosets, introduces the concept of normal coset numbering, due independently to M. Schaps and C. Sims, and describes a version of the Todd-Coxeter algorithm. §3 contains a version due to A. Dietze of a process which was communicated to J. Neubuser by C. Sims, as well as a proof that the process solves the problem stated in the title. A second such process, developed independently by M. Schaps, is described in §4. §5 gives a method for classifying the subgroups by conjugacy, and §6, a suggestion for generalization of the methods to permutation and matrix groups.


2002 ◽  
Vol 85 (2) ◽  
pp. 441-466 ◽  
Author(s):  
MARTIN R. BRIDSON

We extend the range of observed behaviour among length functions of optimal asynchronously automatic structures. We do so by means of a construction that yields asynchronously automatic groups with finite aspherical presentations where the Dehn function of the group is polynomial of arbitrary degree. Many of these groups can be embedded in the automorphism group of a free group. Moreover, the fact that the groups have aspherical presentations makes them useful tools in the search to determine the spectrum of exponents for second order Dehn functions. We contribute to this search by giving the first exact calculations of groups with quadratic and superquadratic exponents. 2000 Mathematical Subject Classification:20F06, 20F65, 20F69.


2016 ◽  
Vol 8 (2) ◽  
Author(s):  
Kristen Pueschel

AbstractIn 2013, Kharlampovich, Myasnikov, and Sapir constructed the first examples of finitely presented residually finite groups with large Dehn functions. Given any recursive function


Sign in / Sign up

Export Citation Format

Share Document