scholarly journals Some challenging group presentations

Author(s):  
George Havas ◽  
Derek F. Holt ◽  
P. E. Kenne ◽  
Sarah Rees

AbstractWe study some challenging presentations which arise as groups of deficiency zero. In four cases we settle finiteness: we show that two presentations are for finite groups while two are for infinite groups. Thus we answer three explicit questions in the literature and we provide the first published deficiency zero presentation for a group with derived length seven. The tools we use are coset enumeration and Knuth-Bebdix rewriting, which are well-established as methods for proving finiteness or otherwise of a finitely presented group. We briefly comment on their capabilities and compare their performance.

1974 ◽  
Vol 26 (4) ◽  
pp. 769-782 ◽  
Author(s):  
Anke Dietze ◽  
Mary Schaps

The use of computers to investigate groups has mainly been restricted to finite groups. In this work, a method is given for finding all subgroups of finite index in a given group, which works equally well for finite and for infinite groups. The basic object of study is the finite set of cosets. §2 reviews briefly the representation of a subgroup by permutations of its cosets, introduces the concept of normal coset numbering, due independently to M. Schaps and C. Sims, and describes a version of the Todd-Coxeter algorithm. §3 contains a version due to A. Dietze of a process which was communicated to J. Neubuser by C. Sims, as well as a proof that the process solves the problem stated in the title. A second such process, developed independently by M. Schaps, is described in §4. §5 gives a method for classifying the subgroups by conjugacy, and §6, a suggestion for generalization of the methods to permutation and matrix groups.


1978 ◽  
Vol 21 (1) ◽  
pp. 37-46 ◽  
Author(s):  
Andrzej Jura

The enumeration method for finite groups, the so-called Todd-Coxeter process, has been described in [2], [3]. Leech [4] and Trotter [5] carried out the process of coset enumeration for groups on a computer. However Mendelsohn [1] was the first to present a formal proof of the fact that this process ends after a finite number of steps and that it actually enumerates cosets in a group. Dietze and Schaps [7] used Todd-Coxeter′s method to find all subgroups of a given finite index in a finitely presented group. B. H. Neumann [8] modified Todd-Coxeter′s method to enumerate cosets in a semigroup, giving however no proofs of the effectiveness of this method nor that it actually enumerates cosets in a semigroup.


Author(s):  
DANIEL ALLCOCK

We generalize a theorem of R. Thomas, which sometimes allows one to tell by inspection that a finitely presented group G is infinite. Groups to which his theorem applies have presentations with not too many more relators than generators, with at least some of the relators being proper powers. Our generalization provides lower bounds for the ranks of the abelianizations of certain normal subgroups of G in terms of their indices. We derive Thomas's theorem as a special case.


1998 ◽  
Vol 08 (01) ◽  
pp. 23-34 ◽  
Author(s):  
Susan Garner Garille ◽  
John Meier

Let G be a finitely generated group. The Bieri–Neumann–Strebel invariant Σ1(G) of G determines, among other things, the distribution of finitely generated subgroups N◃G with G/N abelian. This invariant can be quite difficult to compute. Given a finite presentation 〈S:R〉 for G, there is an algorithm, introduced by Brown and extended by Bieri and Strebel, which determines a space Σ(R) that is always contained in, and is sometimes equal to, Σ1(G). We refine this algorithm to one which involves the local structure of the universal cover of the standard 2-complex of a given presentation. Let Ψ(R) denote the space determined by this algorithm. We show that Σ(R) ⊆ Ψ ⊆ Σ1(G) for any finitely presented group G, and if G admits a staggered presentation, then Ψ = Σ1(G). By casting this algorithm in terms of connectivity properties of graphs, it is shown to be computationally feasible.


1976 ◽  
Vol 20 (1) ◽  
pp. 73-79 ◽  
Author(s):  
M. J. Beetham ◽  
C. M. Campbell

In (8) Todd and Coxeter described an algorithm for enumerating the cosets of a finitely generated subgroup of finite index in a finitely presented group. Several authors ((1), (2), (5), (6), (7)) have discussed a modification of the algorithm to give also a presentation of the subgroup in terms of the given generators.


1969 ◽  
Vol 10 (1-2) ◽  
pp. 162-168 ◽  
Author(s):  
Vlastimil Dlab ◽  
B. H. Neumann

Large finite groups have large automorphism groups [4]; infinite groups may, like the infinite cyclic group, have finite automorphism groups, but their endomorphism semigroups are infinite (see Baer [1, p. 530] or [2, p. 68]). We show in this paper that the corresponding propositions for semigroups are false.


Author(s):  
Costantino Delizia ◽  
Chiara Nicotera

AbstractThe structure of locally soluble periodic groups in which every abelian subgroup is locally cyclic was described over 20 years ago. We complete the aforementioned characterization by dealing with the non-periodic case. We also describe the structure of locally finite groups in which all abelian subgroups are locally cyclic.


2012 ◽  
Vol 64 (2) ◽  
pp. 241-253 ◽  
Author(s):  
Daniel Allcock

Abstract Our main result is that many triangles of Baumslag–Solitar groups collapse to finite groups, generalizing a famous example of Hirsch and other examples due to several authors. A triangle of Baumslag–Solitar groups means a group with three generators, cyclically ordered, with each generator conjugating some power of the previous one to another power. There are six parameters, occurring in pairs, and we show that the triangle fails to be developable whenever one of the parameters divides its partner, except for a few special cases. Furthermore, under fairly general conditions, the group turns out to be finite and solvable of derived length ≤ 3. We obtain a lot of information about finite quotients, even when we cannot determine developability.


Sign in / Sign up

Export Citation Format

Share Document