scholarly journals The strong profinite genus of a finitely presented group can be infinite

2016 ◽  
Vol 18 (9) ◽  
pp. 1909-1918
Author(s):  
Martin Bridson
Author(s):  
George Havas ◽  
Derek F. Holt ◽  
P. E. Kenne ◽  
Sarah Rees

AbstractWe study some challenging presentations which arise as groups of deficiency zero. In four cases we settle finiteness: we show that two presentations are for finite groups while two are for infinite groups. Thus we answer three explicit questions in the literature and we provide the first published deficiency zero presentation for a group with derived length seven. The tools we use are coset enumeration and Knuth-Bebdix rewriting, which are well-established as methods for proving finiteness or otherwise of a finitely presented group. We briefly comment on their capabilities and compare their performance.


1974 ◽  
Vol 26 (4) ◽  
pp. 769-782 ◽  
Author(s):  
Anke Dietze ◽  
Mary Schaps

The use of computers to investigate groups has mainly been restricted to finite groups. In this work, a method is given for finding all subgroups of finite index in a given group, which works equally well for finite and for infinite groups. The basic object of study is the finite set of cosets. §2 reviews briefly the representation of a subgroup by permutations of its cosets, introduces the concept of normal coset numbering, due independently to M. Schaps and C. Sims, and describes a version of the Todd-Coxeter algorithm. §3 contains a version due to A. Dietze of a process which was communicated to J. Neubuser by C. Sims, as well as a proof that the process solves the problem stated in the title. A second such process, developed independently by M. Schaps, is described in §4. §5 gives a method for classifying the subgroups by conjugacy, and §6, a suggestion for generalization of the methods to permutation and matrix groups.


2018 ◽  
Vol 28 (07) ◽  
pp. 1299-1381
Author(s):  
W. Dison ◽  
E. Einstein ◽  
T. R. Riley

For a finitely presented group, the word problem asks for an algorithm which declares whether or not words on the generators represent the identity. The Dehn function is a complexity measure of a direct attack on the word problem by applying the defining relations. Dison and Riley showed that a “hydra phenomenon” gives rise to novel groups with extremely fast growing (Ackermannian) Dehn functions. Here, we show that nevertheless, there are efficient (polynomial time) solutions to the word problems of these groups. Our main innovation is a means of computing efficiently with enormous integers which are represented in compressed forms by strings of Ackermann functions.


1974 ◽  
Vol 18 (1) ◽  
pp. 1-7 ◽  
Author(s):  
W. W. Boone ◽  
D. J. Collins

It is a trivial consequence of Magnus' solution to the word problem for one-relator groups [9] and the existence of finitely presented groups with unsolvable word problem [4] that not every finitely presented group can be embedded in a one-relator group. We modify a construction of Aanderaa [1] to show that any finitely presented group can be embedded in a group with twenty-six defining relations. It then follows from the well-known theorem of Higman [7] that there is a fixed group with twenty-six defining relations in which every recursively presented group is embedded.


1998 ◽  
Vol 58 (3) ◽  
pp. 453-464 ◽  
Author(s):  
Stephen G. Brick ◽  
Jon M. Corson

For a finite presentation of a group, or more generally, a two-complex, we define a function analogous to the Dehn function that we call the annular Dehn function. This function measures the combinatorial area of maps of annuli into the complex as a function of the lengths of the boundary curves. A finitely presented group has solvable conjugacy problem if and only if its annular Dehn function is recursive.As with standard Dehn functions, the annular Dehn function may change with change of presentation. We prove that the type of function obtained is preserved by change of presentation. Further we obtain upper bounds for the annular Dehn functions of free products and, more generally, amalgamations or HNN extensions over finite subgroups.


1978 ◽  
Vol 21 (1) ◽  
pp. 37-46 ◽  
Author(s):  
Andrzej Jura

The enumeration method for finite groups, the so-called Todd-Coxeter process, has been described in [2], [3]. Leech [4] and Trotter [5] carried out the process of coset enumeration for groups on a computer. However Mendelsohn [1] was the first to present a formal proof of the fact that this process ends after a finite number of steps and that it actually enumerates cosets in a group. Dietze and Schaps [7] used Todd-Coxeter′s method to find all subgroups of a given finite index in a finitely presented group. B. H. Neumann [8] modified Todd-Coxeter′s method to enumerate cosets in a semigroup, giving however no proofs of the effectiveness of this method nor that it actually enumerates cosets in a semigroup.


2004 ◽  
Vol 70 (2) ◽  
pp. 199-205 ◽  
Author(s):  
Manuel Cárdenas ◽  
Francisco F. Lasheras ◽  
Ranja Roy

In this paper, we show that the direct of infinite finitely presented groups is always properly 3-realisable. We also show that classical hyperbolic groups are properly 3-realisable. We recall that a finitely presented group G is said to be properly 3-realisable if there exists a compact 2-polyhedron K with π1 (K) ≅ G and whose universal cover K̃ has the proper homotopy type of a (p.1.) 3-manifold with boundary. The question whether or not every finitely presented is properly 3-realisable remains open.


Sign in / Sign up

Export Citation Format

Share Document