scholarly journals TERM REWRITE RULES FOR FINITE FIELDS

1991 ◽  
Vol 01 (03) ◽  
pp. 353-369 ◽  
Author(s):  
STANLEY BURRIS ◽  
JOHN LAWRENCE

Let F1, …, Fk be finite fields with distinct characteristics. We give a finite set of equations which axiomatize the equational theory of F1, …, Fk and then use these axioms to find a finite set of AC-term rewrite rules which is complete for this theory. This gives finite sets of complete AC-term rewrite rules for most instances of xm ≈ x rings by adding new rules to the usual AC-term rewrite rules for commutative rings. The first case for which we do not find a complete set of AC-term rewrite rules is x22 ≈ x, and we doubt that such rules can be found. If R is a set of AC-term rewrite rules from which one can derive x(y + z) → xy + xz, then we show R cannot be complete for x22 ≈ x rings.

1956 ◽  
Vol 21 (3) ◽  
pp. 304-308 ◽  
Author(s):  
H. G. Rice

The two results of this paper (a theorem and an example) are applications of a device described in section 1. Our notation is that of [4], with which we assume familiarity. It may be worth while to mention in particular the function Φ(n, x) which recursively enumerates the partial recursive functions of one variable, the Cantor enumerating functions J(x, y), K(x), L(x), and the classes F and Q of r.e. (recursively enumerable) and finite sets respectively.It is possible to “give” a finite set in a way which conveys the maximum amount of information; this may be called “giving explicitly”, and it requires that in addition to an effective enumeration or decision procedure for the set we give its cardinal number. It is sometimes desired to enumerate effectively an infinite class of finite sets, each given explicitly (e.g., [4] p. 360, or Dekker [1] p. 497), and we suggest here a device for doing this.We set up an effective one-to-one correspondence between the finite sets of non-negative integers and these integers themselves: the integer , corresponds to the set αi, = {a1, a2, …, an} and inversely. α0 is the empty set. Clearly i can be effectively computed from the elements of αi and its cardinal number.


Author(s):  
Joaquín Moraga

Abstract In this article, we prove a local implication of boundedness of Fano varieties. More precisely, we prove that $d$ -dimensional $a$ -log canonical singularities with standard coefficients, which admit an $\epsilon$ -plt blow-up, have minimal log discrepancies belonging to a finite set which only depends on $d,\,a$ and $\epsilon$ . This result gives a natural geometric stratification of the possible mld's in a fixed dimension by finite sets. As an application, we prove the ascending chain condition for minimal log discrepancies of exceptional singularities. We also introduce an invariant for klt singularities related to the total discrepancy of Kollár components.


1976 ◽  
Vol 15 (2) ◽  
pp. 245-251
Author(s):  
Reinhard A. Razen

Let A = {ai} be a finite set of integers and let p and m denote the cardinalities of A + A = {ai+aj} and A - A {ai–aj}, respectively. In the paper relations are established between p and m; in particular, if max {ai–ai-1} = 2 those sets are characterized for which p = m holds.


1979 ◽  
Vol 20 (2) ◽  
pp. 169-178
Author(s):  
Harald Niederreiter ◽  
Jau-Shyong Shiue

For various discrete commutative rings a concept of uniform distribution has already been introduced and studied, for example, for the ring of rational integers by Niven [9] (see also Kuipers and Niederreiter [2, Ch. 5]), for the rings of Gaussian and Eisenstein integers by Kuipers, Niederreiter, and Shiue [3], for rings of algebraic integers by Lo and Niederreiter [4], [7], and for finite fields by Gotusso [1] and Niederreiter and Shiue [8]. In the present paper, we shall show that a satisfactory theory of uniform distribution can also be developed in a noncommutative setting, namely for matrix rings over the rational integers.


1995 ◽  
Vol 52 (2) ◽  
pp. 215-224 ◽  
Author(s):  
Hong-Xun Yi

In 1976, Gross posed the question “can one find two (or possibly even one) finite sets Sj (j = 1, 2) such that any two entire functions f and g satisfying Ef(Sj) = Eg(Sj) for j = 1,2 must be identical?”, where Ef(Sj) stands for the inverse image of Sj under f. In this paper, we show that there exists a finite set S with 11 elements such that for any two non-constant meromorphic functions f and g the conditions Ef(S) = Eg(S) and Ef({∞}) = Eg({∞}) imply f ≡ g. As a special case this also answers the question posed by Gross.


1992 ◽  
Vol 57 (3) ◽  
pp. 832-843 ◽  
Author(s):  
Balázs Biró

This paper deals with relation, cylindric and polyadic equality algebras. First of all it addresses a problem of B. Jónsson. He asked whether relation set algebras can be expanded by finitely many new operations in a “reasonable” way so that the class of these expansions would possess a finite equational base. The present paper gives a negative answer to this problem: Our main theorem states that whenever Rs+ is a class that consists of expansions of relation set algebras such that each operation of Rs+ is logical in Jónsson's sense, i.e., is the algebraic counterpart of some (derived) connective of first-order logic, then the equational theory of Rs+ has no finite axiom systems. Similar results are stated for the other classes mentioned above. As a corollary to this theorem we can solve a problem of Tarski and Givant [87], Namely, we claim that the valid formulas of certain languages cannot be axiomatized by a finite set of logical axiom schemes. At the same time we give a negative solution for a version of a problem of Henkin and Monk [74] (cf. also Monk [70] and Németi [89]).Throughout we use the terminology, notation and results of Henkin, Monk, Tarski [71] and [85]. We also use results of Maddux [89a].Notation. RA denotes the class of relation algebras, Rs denotes the class of relation set algebras and RRA is the class of representable relation algebras, i.e. the class of subdirect products of relation set algebras. The symbols RA, Rs and RRA abbreviate also the expressions relation algebra, relation set algebra and representable relation algebra, respectively.For any class C of similar algebras EqC is the set of identities that hold in C, while Eq1C is the set of those identities in EqC that contain at most one variable symbol. (We note that Henkin et al. [85] uses the symbol EqC in another sense.)


2001 ◽  
Vol 38 (1-4) ◽  
pp. 1-11 ◽  
Author(s):  
Hajnalka Andréka

We give a finite set of equations axiomatizing the class Gn of locally square cylindricrelativized set algebras of dimension n, if n is finite. For infinite n, we give an axiomatization of the equational theory of Gn. HereGn denotes the class of all cylindric-relativized set algebras of dimension n with unit a union of Cartesian spaces.


1977 ◽  
Vol 17 (1) ◽  
pp. 125-134 ◽  
Author(s):  
Peter Frankl
Keyword(s):  

Let X be a finite set of cardinality n, and let F be a family of k-subsets of X. In this paper we prove the following conjecture of P. Erdös and V.T. Sós.If n > n0(k), k ≥ 4, then we can find two members F and G in F such that |F ∩ G| = 1.


1984 ◽  
Vol 49 (4) ◽  
pp. 1333-1338
Author(s):  
Cornelia Kalfa

In [4] I proved that in any nontrivial algebraic language there are no algorithms which enable us to decide whether a given finite set of equations Σ has each of the following properties except P2 (for which the problem is open):P0(Σ) = the equational theory of Σ is equationally complete.P1(Σ) = the first-order theory of Σ is complete.P2(Σ) = the first-order theory of Σ is model-complete.P3(Σ) = the first-order theory of the infinite models of Σ is complete.P4(Σ) = the first-order theory of the infinite models of Σ is model-complete.P5(Σ) = Σ has the joint embedding property.In this paper I prove that, in any finite trivial algebraic language, such algorithms exist for all the above Pi's. I make use of Ehrenfeucht's result [2]: The first-order theory generated by the logical axioms of any trivial algebraic language is decidable. The results proved here are part of my Ph.D. thesis [3]. I thank Wilfrid Hodges, who supervised it.Throughout the paper is a finite trivial algebraic language, i.e. a first-order language with equality, with one operation symbol f of rank 1 and at most finitely many constant symbols.


Sign in / Sign up

Export Citation Format

Share Document