scholarly journals On minimal log discrepancies and kollár components

Author(s):  
Joaquín Moraga

Abstract In this article, we prove a local implication of boundedness of Fano varieties. More precisely, we prove that $d$ -dimensional $a$ -log canonical singularities with standard coefficients, which admit an $\epsilon$ -plt blow-up, have minimal log discrepancies belonging to a finite set which only depends on $d,\,a$ and $\epsilon$ . This result gives a natural geometric stratification of the possible mld's in a fixed dimension by finite sets. As an application, we prove the ascending chain condition for minimal log discrepancies of exceptional singularities. We also introduce an invariant for klt singularities related to the total discrepancy of Kollár components.

2012 ◽  
Vol 23 (11) ◽  
pp. 1250115 ◽  
Author(s):  
LE MAU HAI ◽  
PHAM HOANG HIEP ◽  
VU VIET HUNG

In this paper we give the relation between the log canonical threshold c0(f) and the geometry of the zero set {f = 0} of a holomorphic function f. Applying the above relation we give a simple proof for the ascending chain condition in dimension two.


1970 ◽  
Vol 22 (6) ◽  
pp. 1224-1237 ◽  
Author(s):  
Richard M. Cohn

Our aim in this paper is to extend to difference-differential rings the beautiful theorem of Kolchin [5, Theorem 3] for the differential case. The necessity portion of Kolchin's result is not obtained.What might well be called the Ritt basis theorem states that if a commutative ring R with identity is finitely generated over a subring R0, then the ascending chain condition for radical ideals of R0 implies the ascending chain condition for radical ideals of R. (This is indeed a basis theorem. If we define a basis for a radical ideal A to be a finite set B such that then every radical ideal of a ring R has a basis if and only if the ascending chain condition for radical ideals holds in R.) It is the Ritt basis theorem rather than the Hilbert basis theorem which has appropriate generalizations in differential and difference algebra, where in fact it originated.


1949 ◽  
Vol 1 (2) ◽  
pp. 125-152 ◽  
Author(s):  
Ernst Snapper

The purpose of this paper is to investigate completely indecomposable modules. A completely indecomposable module is an additive abelian group with a ring A as operator domain, where the following four conditions are satisfied.1-1. A is a commutative ring and has a unit element which is unit operator for .1-2. The submodules of satisfy the ascending chain condition. (Submodule will always mean invariant submodule.)


1956 ◽  
Vol 21 (3) ◽  
pp. 304-308 ◽  
Author(s):  
H. G. Rice

The two results of this paper (a theorem and an example) are applications of a device described in section 1. Our notation is that of [4], with which we assume familiarity. It may be worth while to mention in particular the function Φ(n, x) which recursively enumerates the partial recursive functions of one variable, the Cantor enumerating functions J(x, y), K(x), L(x), and the classes F and Q of r.e. (recursively enumerable) and finite sets respectively.It is possible to “give” a finite set in a way which conveys the maximum amount of information; this may be called “giving explicitly”, and it requires that in addition to an effective enumeration or decision procedure for the set we give its cardinal number. It is sometimes desired to enumerate effectively an infinite class of finite sets, each given explicitly (e.g., [4] p. 360, or Dekker [1] p. 497), and we suggest here a device for doing this.We set up an effective one-to-one correspondence between the finite sets of non-negative integers and these integers themselves: the integer , corresponds to the set αi, = {a1, a2, …, an} and inversely. α0 is the empty set. Clearly i can be effectively computed from the elements of αi and its cardinal number.


2017 ◽  
Vol 82 (2) ◽  
pp. 576-589 ◽  
Author(s):  
KOSTAS HATZIKIRIAKOU ◽  
STEPHEN G. SIMPSON

AbstractLetSbe the group of finitely supported permutations of a countably infinite set. Let$K[S]$be the group algebra ofSover a fieldKof characteristic 0. According to a theorem of Formanek and Lawrence,$K[S]$satisfies the ascending chain condition for two-sided ideals. We study the reverse mathematics of this theorem, proving its equivalence over$RC{A_0}$(or even over$RCA_0^{\rm{*}}$) to the statement that${\omega ^\omega }$is well ordered. Our equivalence proof proceeds via the statement that the Young diagrams form a well partial ordering.


1970 ◽  
Vol 22 (4) ◽  
pp. 839-846 ◽  
Author(s):  
Robert V. Moody

In [2], we considered a class of Lie algebras generalizing the classical simple Lie algebras. Using a field Φ of characteristic zero and a square matrix (Aij) of integers with the properties (1) Aii = 2, (2) Aij ≦ 0 if i ≠ j, (3) Aij = 0 if and only if Ajt = 0, and (4) is symmetric for some appropriate non-zero rational a Lie algebra E = E((Aij)) over Φ can be constructed, together with the usual accoutrements: a root system, invariant bilinear form, and Weyl group.For indecomposable (A ij), E is simple except when (Aij) is singular and removal of any row and corresponding column of (Aij) leaves a Cartan matrix. The non-simple Es, Euclidean Lie algebras, were our object of study in [3] as well as in the present paper. They are infinite-dimensional, have ascending chain condition on ideals, and proper ideals are of finite codimension.


2012 ◽  
Vol 49 (3) ◽  
pp. 366-389 ◽  
Author(s):  
Edmond Lee

The smallest monoid containing a 2-testable semigroup is defined to be a 2-testable monoid. The well-known Brandt monoid B21 of order six is an example of a 2-testable monoid. The finite basis problem for 2-testable monoids was recently addressed and solved. The present article continues with the investigation by describing all monoid varieties generated by 2-testable monoids. It is shown that there are 28 such varieties, all of which are finitely generated and precisely 19 of which are finitely based. As a comparison, the sub-variety lattice of the monoid variety generated by the monoid B21 is examined. This lattice has infinite width, satisfies neither the ascending chain condition nor the descending chain condition, and contains non-finitely generated varieties.


Sign in / Sign up

Export Citation Format

Share Document