scholarly journals Error estimates for forward Euler shock capturing finite element approximations of the one-dimensional Burgers' equation

2015 ◽  
Vol 25 (11) ◽  
pp. 2015-2042
Author(s):  
Erik Burman

We propose an error analysis for a shock capturing finite element method for the Burgers' equation using the duality theory due to Tadmor. The estimates use a one-sided Lipschitz stability (Lip+-stability) estimate on the discrete solution and are obtained in a weak norm, but thanks to a total variation a priori bound on the discrete solution and an interpolation inequality, error estimates in Lp-norms (1 ≤ p < ∞) are deduced. Both first-order artificial viscosity and a nonlinear shock capturing term that formally is of second order are considered. For the discretization in time we use the forward Euler method. In the numerical section we verify the convergence order of the nonlinear scheme using the forward Euler method and a second-order strong stability preserving Runge–Kutta method. We also study the Lip+-stability property numerically and give some examples of when it holds strictly and when it is violated.

2020 ◽  
Vol 20 (4) ◽  
pp. 717-725 ◽  
Author(s):  
Vidar Thomée

AbstractFor a spatially periodic convection-diffusion problem, we analyze a time stepping method based on Lie splitting of a spatially semidiscrete finite element solution on time steps of length k, using the backward Euler method for the diffusion part and a stabilized explicit forward Euler approximation on {m\geq 1} intervals of length {k/m} for the convection part. This complements earlier work on time splitting of the problem in a finite difference context.


Mathematics ◽  
2019 ◽  
Vol 7 (10) ◽  
pp. 935 ◽  
Author(s):  
Simone Fiori

The present paper recalls a formulation of non-conservative system dynamics through the Lagrange–d’Alembert principle expressed through a generalized Euler–Poincaré form of the system equation on a Lie group. The paper illustrates applications of the generalized Euler–Poincaré equations on the rotation groups to a gyrostat satellite and a quadcopter drone. The numerical solution of the dynamical equations on the rotation groups is tackled via a generalized forward Euler method and an explicit Runge–Kutta integration method tailored to Lie groups.


Sign in / Sign up

Export Citation Format

Share Document