scholarly journals CONTINUOUS ANALOG OF THE GAUSS–NEWTON METHOD

1999 ◽  
Vol 09 (03) ◽  
pp. 463-474 ◽  
Author(s):  
R. G. AIRAPETYAN ◽  
A. G. RAMM ◽  
A. B. SMIRNOVA

A Continuous Analog of discrete Gauss–Newton Method (CAGNM) for numerical solution of nonlinear problems is suggested. In order to avoid the ill-posed inversion of the Fréchet derivative operator, some regularization function is introduced. For the CAGNM, a convergence theorem is proved. The proposed method is illustrated by a numerical example in which a nonlinear inverse problem of gravimetry is considered. Based on the results of the numerical experiments, practical recommendations for the choice of the regularization function are given.

2003 ◽  
Vol 14 (1) ◽  
pp. 15-38 ◽  
Author(s):  
BARBARA KALTENBACHER ◽  
MANFRED KALTENBACHER ◽  
STEFAN REITZINGER

Our task is the identification of the reluctivity $\nu\,{=}\,\nu(B)$ in $\vec{H}\,{=}\,\nu(B) \vec{B}$, ($B\,{=}\,|\vec{B}|$) from measurements of the magnetic flux for different excitation currents in a driving coil, in the context of a nonuniform magnetic field distribution. This is a nonlinear inverse problem and ill-posed in the sense of unstable data dependence, whose solution is done numerically by a Newton type iterative scheme, regularized by an appropriate stopping criterion. The computational complexity of this method is determined by the number of necessary forward evaluations, i.e. the number of numerical solutions to the three-dimensional magnetic field problem. We keep the effort minimal by applying a special discretization strategy to the inverse problem, based on multigrid methods for ill-posed problems. Numerical results demonstrate the efficiency of the proposed method.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
B. Borsos ◽  
János Karátson

Abstract The goal of this paper is to present various types of iterative solvers: gradient iteration, Newton’s method and a quasi-Newton method, for the finite element solution of elliptic problems arising in Gao type beam models (a geometrical type of nonlinearity, with respect to the Euler–Bernoulli hypothesis). Robust behaviour, i.e., convergence independently of the mesh parameters, is proved for these methods, and they are also tested with numerical experiments.


Proceedings ◽  
2019 ◽  
Vol 33 (1) ◽  
pp. 21
Author(s):  
Fabrizia Guglielmetti ◽  
Eric Villard ◽  
Ed Fomalont

A stable and unique solution to the ill-posed inverse problem in radio synthesis image analysis is sought employing Bayesian probability theory combined with a probabilistic two-component mixture model. The solution of the ill-posed inverse problem is given by inferring the values of model parameters defined to describe completely the physical system arised by the data. The analysed data are calibrated visibilities, Fourier transformed from the ( u , v ) to image planes. Adaptive splines are explored to model the cumbersome background model corrupted by the largely varying dirty beam in the image plane. The de-convolution process of the dirty image from the dirty beam is tackled in probability space. Probability maps in source detection at several resolution values quantify the acquired knowledge on the celestial source distribution from a given state of information. The information available are data constrains, prior knowledge and uncertain information. The novel algorithm has the aim to provide an alternative imaging task for the use of the Atacama Large Millimeter/Submillimeter Array (ALMA) in support of the widely used Common Astronomy Software Applications (CASA) enhancing the capabilities in source detection.


2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Guanglu Zhou ◽  
Boying Wu ◽  
Wen Ji ◽  
Seungmin Rho

This study presents numerical schemes for solving a parabolic partial differential equation with a time- or space-dependent coefficient subject to an extra measurement. Through the extra measurement, the inverse problem is transformed into an equivalent nonlinear equation which is much simpler to handle. By the variational iteration method, we obtain the exact solution and the unknown coefficients. The results of numerical experiments and stable experiments imply that the variational iteration method is very suitable to solve these inverse problems.


Geophysics ◽  
1994 ◽  
Vol 59 (9) ◽  
pp. 1327-1341 ◽  
Author(s):  
Douglas W. Oldenburg ◽  
Yaoguo Li

We develop three methods to invert induced polarization (IP) data. The foundation for our algorithms is an assumption that the ultimate effect of chargeability is to alter the effective conductivity when current is applied. This assumption, which was first put forth by Siegel and has been routinely adopted in the literature, permits the IP responses to be numerically modeled by carrying out two forward modelings using a DC resistivity algorithm. The intimate connection between DC and IP data means that inversion of IP data is a two‐step process. First, the DC potentials are inverted to recover a background conductivity. The distribution of chargeability can then be found by using any one of the three following techniques: (1) linearizing the IP data equation and solving a linear inverse problem, (2) manipulating the conductivities obtained after performing two DC resistivity inversions, and (3) solving a nonlinear inverse problem. Our procedure for performing the inversion is to divide the earth into rectangular prisms and to assume that the conductivity σ and chargeability η are constant in each cell. To emulate complicated earth structure we allow many cells, usually far more than there are data. The inverse problem, which has many solutions, is then solved as a problem in optimization theory. A model objective function is designed, and a “model” (either the distribution of σ or η)is sought that minimizes the objective function subject to adequately fitting the data. Generalized subspace methodologies are used to solve both inverse problems, and positivity constraints are included. The IP inversion procedures we design are generic and can be applied to 1-D, 2-D, or 3-D earth models and with any configuration of current and potential electrodes. We illustrate our methods by inverting synthetic DC/IP data taken over a 2-D earth structure and by inverting dipole‐dipole data taken in Quebec.


Sign in / Sign up

Export Citation Format

Share Document