Characterising the parameter space of a highly nonlinear inverse problem

2006 ◽  
Vol 14 (2) ◽  
pp. 171-191 ◽  
Author(s):  
Pedro J. Ballester ◽  
Jonathan N. Carter
Author(s):  
Sergio G. Torres Cedillo ◽  
Philip Bonello ◽  
Ghaith Ghanim Al-Ghazal ◽  
Jacinto Cortés Pérez ◽  
Alberto Reyes Solis

Modern aero-engine structures typically have at least two nested rotors mounted within a flexible casing via squeeze-film damper (SFD) bearings. The inaccessibility of the HP rotor under operational conditions motivates the use of a non-invasive inverse problem procedure for identifying the unbalance. Such an inverse problem requires prior knowledge of the structure and measurements of the vibrations at the casing. Recent work by the authors reported a non-invasive inverse method for the balancing of rotordynamic systems with nonlinear squeeze-film damper (SFD) bearings, which overcomes several limitations of earlier works. However, it was not applied to a common practical configuration wherein the HP rotor is mounted on the casing via just one weak linear connection (retainer spring), with the other connections being highly nonlinear SFDs. The analysis of the present paper considers such a system. It explores the influence of the condition number and how it is affected as the number of sensors and/or measurement speeds is increased. The results show that increasing the number of measurement speeds has a far more significant impact on the conditioning of the problem than increasing the number of sensors. The balancing effectiveness is reasonably good under practical noise level conditions, but significantly lower than obtained for the previously considered simpler configurations.


Geophysics ◽  
1994 ◽  
Vol 59 (9) ◽  
pp. 1327-1341 ◽  
Author(s):  
Douglas W. Oldenburg ◽  
Yaoguo Li

We develop three methods to invert induced polarization (IP) data. The foundation for our algorithms is an assumption that the ultimate effect of chargeability is to alter the effective conductivity when current is applied. This assumption, which was first put forth by Siegel and has been routinely adopted in the literature, permits the IP responses to be numerically modeled by carrying out two forward modelings using a DC resistivity algorithm. The intimate connection between DC and IP data means that inversion of IP data is a two‐step process. First, the DC potentials are inverted to recover a background conductivity. The distribution of chargeability can then be found by using any one of the three following techniques: (1) linearizing the IP data equation and solving a linear inverse problem, (2) manipulating the conductivities obtained after performing two DC resistivity inversions, and (3) solving a nonlinear inverse problem. Our procedure for performing the inversion is to divide the earth into rectangular prisms and to assume that the conductivity σ and chargeability η are constant in each cell. To emulate complicated earth structure we allow many cells, usually far more than there are data. The inverse problem, which has many solutions, is then solved as a problem in optimization theory. A model objective function is designed, and a “model” (either the distribution of σ or η)is sought that minimizes the objective function subject to adequately fitting the data. Generalized subspace methodologies are used to solve both inverse problems, and positivity constraints are included. The IP inversion procedures we design are generic and can be applied to 1-D, 2-D, or 3-D earth models and with any configuration of current and potential electrodes. We illustrate our methods by inverting synthetic DC/IP data taken over a 2-D earth structure and by inverting dipole‐dipole data taken in Quebec.


2003 ◽  
Vol 14 (1) ◽  
pp. 15-38 ◽  
Author(s):  
BARBARA KALTENBACHER ◽  
MANFRED KALTENBACHER ◽  
STEFAN REITZINGER

Our task is the identification of the reluctivity $\nu\,{=}\,\nu(B)$ in $\vec{H}\,{=}\,\nu(B) \vec{B}$, ($B\,{=}\,|\vec{B}|$) from measurements of the magnetic flux for different excitation currents in a driving coil, in the context of a nonuniform magnetic field distribution. This is a nonlinear inverse problem and ill-posed in the sense of unstable data dependence, whose solution is done numerically by a Newton type iterative scheme, regularized by an appropriate stopping criterion. The computational complexity of this method is determined by the number of necessary forward evaluations, i.e. the number of numerical solutions to the three-dimensional magnetic field problem. We keep the effort minimal by applying a special discretization strategy to the inverse problem, based on multigrid methods for ill-posed problems. Numerical results demonstrate the efficiency of the proposed method.


Geophysics ◽  
1994 ◽  
Vol 59 (10) ◽  
pp. 1631-1632 ◽  
Author(s):  
David F. Aldridge

Seismic traveltime tomography is a nonlinear inverse problem wherein an unknown slowness model is inferred from the observed arrival times of seismic waves. Nonlinearity arises because the raypath connecting a given source and receiver depends on the slowness. Specifically, if L(s) designates a raypath through the slowness model s between two fixed endpoints, then the path integral for traveltime [Formula: see text] is a nonlinear functional of s because it does not, in general, satisfy the superposition condition (i.e., [Formula: see text] where [Formula: see text] and [Formula: see text] are two different slowness models). The tomographic inverse problem can be solved after linearizing the traveltime expression about a known slowness model [Formula: see text]. This linearized expression is usually obtained by appealing to Fermat’s principle (e.g., Nolet, 1987). Alternately, the required relation can be rigorously derived via ray‐perturbation theory (Snieder and Sambridge, 1992). The purpose of this note is to present a straightforward derivation of the same result by linearizing the eikonal equation for traveltimes. Wenzel (1988) adopts this approach, but his method of proof cannot be generalized to heterogeneous 3-D media. A full 3-D treatment is given here. The proof is remarkably simple, and thus it is quite possible that others have discovered it previously.


Sign in / Sign up

Export Citation Format

Share Document