ALTERNATIVE WHEELCHAIR CONTROL INVOLVING INTENTIONAL MUSCLE CONTRACTIONS

2009 ◽  
Vol 18 (03) ◽  
pp. 439-465 ◽  
Author(s):  
TORSTEN FELZER ◽  
BRUNO STRAH ◽  
RAINER NORDMANN ◽  
SEBASTIAN MIGLIETTA

This paper deals with various ways of controlling an electrically powered wheelchair beyond the usual method involving a manual joystick. The main focus is on the newest version of HaWCoS – the "HAnds-free Wheelchair COntrol System" – allowing persons with severe disabilities to reliably navigate a power wheelchair without the need to use the hands. All the user has to do is to produce a sequence of tiny contractions of an arbitrary muscle, e.g., by raising the eyebrow. The working prototype of the system, which has been realized as a stand-alone device, is introduced in detail, together with a closer look at the muscle-based control principle and a brief description of a PC-based simulator. The advantages and the drawbacks of the system are discussed on the basis of a rather simple real-life experiment. The paper also elaborates on possible approaches to improve HaWCoS (by reducing or eliminating its problems) in the future. In addition to a quick software solution and a controller implementation involving supplemental sensory information, planned "improvements" include the development of an "intelligent wheelchair" with HaWCoS being some sort of a prototype for the User Interface component.

Author(s):  
Paul Mitzlaff ◽  
Robert Niznik ◽  
Redwan Alqasemi ◽  
Rajiv Dubey

The use of apps on hand-held devices has the potential to offer advancements in controlling many devices with an intuitive user interface, including power wheelchair control. Many powered wheelchair users require special adaptations to their control interface in order to drive the chair. This paper presents the development and testing of an Android based control system for a powered wheelchair. The control system utilizes the Android device’s sensors to control the wheelchair. The device can be attached to various parts of the user’s body which the user can move to control the wheelchair. The accelerometers in the device are used to drive the chair using Bluetooth technology connected to the wheelchair’s control system. Subject testing was performed with the user holding the Android device in their hand while they performed a variety of structured tasks. These series of tasks were duplicated while the Android device was attached to their hat and again when strapped to the upper left arm. The results from the collected data on specific metrics were compared against similar data when the wheelchair is controlled using a standard wheelchair joystick.


2016 ◽  
Vol 25 (2) ◽  
pp. 107-121 ◽  
Author(s):  
Malek Njah ◽  
Mohamed Jallouli

AbstractThe electric wheelchair gives more autonomy and facilitates movement for handicapped persons in the home or in a hospital. Among the problems faced by these persons are collision with obstacles, the doorway, the navigation in a hallway, and reaching the desired place. These problems are due to the difficult manipulation of an electric wheelchair, especially for persons with severe disabilities. Hence, we tried to add more functionality to the standard wheelchair in order to increase movement range, security, environment access, and comfort. In this context, we have developed an automatic control method for indoor navigation. The proposed control system is mounted on the electric wheelchair for the handicapped, developed in the research laboratory CEMLab (Control and Energy Management Laboratory-Tunisia). The proposed method is based on two fuzzy controllers that ensure target achievement and obstacle avoidance. Furthermore, an extended Kalman filter was used to provide precise measurements and more effective data fusion localization. In this paper, we present the simulation and experimental results of the wheelchair navigation system.


Sensors ◽  
2018 ◽  
Vol 19 (1) ◽  
pp. 109
Author(s):  
Theja Pingali ◽  
Edward Lemaire ◽  
Natalie Baddour

In social situations, people who use a powered wheelchair must divide their attention between navigating the chair and conversing with people. These conversations could lead to increased mental stress when navigating and distraction from maneuvering the chair. As a solution that maintains a good conversation distance between the wheelchair and the accompanying person (Social Following), a wheelchair control system was developed to provide automated side-by-side following by wirelessly connecting the wheelchair to the person. Two ultrasonic range sensors and three piezoelectric ultrasonic transducers were used to identify the accompanying person and determine their position and heading. Identification involved an ultrasonic beacon worn on the person’s side, at hip level, and receivers on the wheelchair. A drive control algorithm maintained a constant conversation distance along the person’s trajectory. A plug-and-play prototype was developed and connected to a Permobil F5 Corpus wheelchair with a modified Eightfold Technologies SmartChair Remote. Results demonstrated that the system can navigate a wheelchair based on the accompanying person’s trajectory, which is advantageous for users who require hands-free wheelchair control during social activities.


2015 ◽  
Vol 733 ◽  
pp. 740-744 ◽  
Author(s):  
Yi Zhang ◽  
Shi Chuan Xu

Compared with the traditional electric-powered wheelchair, people are paying more attention on intelligent wheelchair. While the traditional intelligent wheelchair relays on separate designed control system, it is not good for general use. In that case, ROS provides an easy to use framework for rapid system development so that the researchers can develop various software packages to meet their needs, and we can also call each other packages without considering the compatibility problems. In this paper, we present a ROS (Robot Operating System) based intelligent wheelchair with the function of voice-control navigation. Compared with the traditional navigation, the voice-control navigation is more human. Obviously, ROS increases the versatility of system and reduces the cost. In order to prove the advancement and feasibility of this developed system, some experimental results are given in the paper.


2013 ◽  
Vol 655-657 ◽  
pp. 1427-1430
Author(s):  
Tian Min Guan ◽  
Xi Mei Wang ◽  
Yan Li Yuan

According to the idea of the modular design, an intelligent wheelchair control system based on F28335 is designed. This paper introduces this system, including the whole structure, hardware composition and corresponding software design. Control mode of the intelligent wheelchair is divided into manual control and automatic control mode. Using the operating lever, brain wave control signal and hands, users can let the intelligent wheelchair go forward, go backward, turn left, turn right, accelerate and stop. This control system has a lot of advantages, for example, simple structure and easy to expand functions and so on.


Sign in / Sign up

Export Citation Format

Share Document