Simulation of Fuzzy-Logic-Based Intelligent Wheelchair Control System

2004 ◽  
Vol 39 (2) ◽  
pp. 227-241 ◽  
Author(s):  
Iztok Špacapan ◽  
Juš Kocijan ◽  
Tadej Bajd
2009 ◽  
Vol 18 (03) ◽  
pp. 439-465 ◽  
Author(s):  
TORSTEN FELZER ◽  
BRUNO STRAH ◽  
RAINER NORDMANN ◽  
SEBASTIAN MIGLIETTA

This paper deals with various ways of controlling an electrically powered wheelchair beyond the usual method involving a manual joystick. The main focus is on the newest version of HaWCoS – the "HAnds-free Wheelchair COntrol System" – allowing persons with severe disabilities to reliably navigate a power wheelchair without the need to use the hands. All the user has to do is to produce a sequence of tiny contractions of an arbitrary muscle, e.g., by raising the eyebrow. The working prototype of the system, which has been realized as a stand-alone device, is introduced in detail, together with a closer look at the muscle-based control principle and a brief description of a PC-based simulator. The advantages and the drawbacks of the system are discussed on the basis of a rather simple real-life experiment. The paper also elaborates on possible approaches to improve HaWCoS (by reducing or eliminating its problems) in the future. In addition to a quick software solution and a controller implementation involving supplemental sensory information, planned "improvements" include the development of an "intelligent wheelchair" with HaWCoS being some sort of a prototype for the User Interface component.


2013 ◽  
Vol 655-657 ◽  
pp. 1427-1430
Author(s):  
Tian Min Guan ◽  
Xi Mei Wang ◽  
Yan Li Yuan

According to the idea of the modular design, an intelligent wheelchair control system based on F28335 is designed. This paper introduces this system, including the whole structure, hardware composition and corresponding software design. Control mode of the intelligent wheelchair is divided into manual control and automatic control mode. Using the operating lever, brain wave control signal and hands, users can let the intelligent wheelchair go forward, go backward, turn left, turn right, accelerate and stop. This control system has a lot of advantages, for example, simple structure and easy to expand functions and so on.


2018 ◽  
Vol 2 (1) ◽  
Author(s):  
Raid Daoud ◽  
Yaareb Al-Khashab

The internet service is provided by a given number of servers located in the main node of internet service provider (ISP). In some cases; the overload problem was occurred because a demand on a given website goes to very high level. In this paper, a fuzzy logic control (FLC) has proposed to distribute the load into the internet servers by a smart and flexible manner. Three effected parameters are tacked into account as input for FLC: link capacity which has three linguistic variables with Gaussian membership function (MF): (small, medium and big), traffic density with linguistic variables (low, normal and high) and channel latency with linguistic variables (empty, half and full); with one output which is the share server status (single, simple and share). The proposed work has been simulated by using MATLAB 2016a, by building a structure in the Fuzzy toolbox. The results were fixed by two manners: the graphical curves and the numerical tables, the surface response was smoothly changed and translates the well-fixed control system. The numerical results of the control system satisfy the idea of the smart rout for the incoming traffics from the users to internet servers. So, the response of the proposed system for the share of server ratio is 0.122, when the input parameter in the smallest levels; and the ratio is 0.879 when the input parameters are in highest level. The smart work and flexible use for the FLC is the main success solution for most of today systems control.


Author(s):  
Fachrudin Hunaini ◽  
Imam Robandi ◽  
Nyoman Sutantra

Fuzzy Logic Control (FLC) is a reliable control system for controlling nonlinear systems, but to obtain optimal fuzzy logic control results, optimal Membership Function parameters are needed. Therefore in this paper Particle Swarm Optimization (PSO) is used as a fast and accurate optimization method to determine Membership Function parameters. The optimal control system simulation is carried out on the automatic steering system of the vehicle model and the results obtained are the vehicle's lateral motion error can be minimized so that the movement of the vehicle can always be maintained on the expected trajectory


Sign in / Sign up

Export Citation Format

Share Document