Linearized chord diagrams and an upper bound for vassiliev invariants

2000 ◽  
Vol 09 (07) ◽  
pp. 847-853 ◽  
Author(s):  
Béla Bollobás ◽  
Oliver Riordan

Recently, Stoimenow [J. Knot Th. Ram. 7 (1998), 93–114] gave an upper bound on the dimension dn of the space of order n Vassiliev knot invariants, by considering chord diagrams of a certain type. We present a simpler argument which gives a better bound on the number of these chord diagrams, and hence on dn.

1998 ◽  
Vol 07 (01) ◽  
pp. 93-114 ◽  
Author(s):  
A. Stoimenow

We treat an enumeration problem of chord diagrams, which is shown to yield an upper bound for the dimension of the space of Vassiliev invariants for knots. We give an asymptotical estimate for this bound. As an aside, we present a trivial proof for the bound D!.


Author(s):  
Simon Willerton

AbstractThis paper is closely related to Bar-Natan's work, and fills in some of the gaps in [1]. Following his analogy of the extension of knot invariants to knots with double points to the notion of multivariate calculus on polynomials, we introduce a new notation which facilitates the formulation of a Leibniz type formula for the product of two Vassiliev invariants. This leads us to see how Bar-Natan's co-product of chord diagrams corresponds to multiplication of Vassiliev invariants. We also include a proof that the multiplication in is a consequence of Bar-Natan's 4T relation.The last part of this paper consists of a proof that the space of weight systems is a sub-Hopf algebra of the space *, by means of the canonical projection.


1996 ◽  
Vol 142 ◽  
pp. 39-65 ◽  
Author(s):  
Thang Tu Quoc Le ◽  
Jun Murakami

Kontsevich’s integral is a knot invariant which contains in itself all knot invariants of finite type, or Vassiliev’s invariants. The value of this integral lies in an algebra A0, spanned by chord diagrams, subject to relations corresponding to the flatness of the Knizhnik-Zamolodchikov equation, or the so called infinitesimal pure braid relations [11].


2007 ◽  
Vol 59 (2) ◽  
pp. 418-448 ◽  
Author(s):  
A. Stoimenow

AbstractIt is known that the Brandt–Lickorish–Millett–Ho polynomial Q contains Casson's knot invariant. Whether there are (essentially) other Vassiliev knot invariants obtainable from Q is an open problem. We show that this is not so up to degree 9. We also give the (apparently) first examples of knots not distinguished by 2-cable HOMFLY polynomials which are not mutants. Our calculations provide evidence of a negative answer to the question whether Vassiliev knot invariants of degree d ≤ 10 are determined by the HOMFLY and Kauffman polynomials and their 2-cables, and for the existence of algebras of such Vassiliev invariants not isomorphic to the algebras of their weight systems.


1994 ◽  
Vol 03 (03) ◽  
pp. 391-405 ◽  
Author(s):  
ROLLAND TRAPP

In this paper we describe a difference sequence technique, hereafter referred to as the twist sequence technique, for studying Vassiliev invariants. This technique is used to show that Vassiliev invariants have polynomial growth on certain sequences of knots. Restrictions of Vassiliev invariants to the sequence of (2, 2i + 1) torus knots are characterized. As a corollary it is shown that genus, crossing number, signature, and unknotting number are not Vassiliev invariants. This characterization also determines the topological information about (2, 2i + 1) torus knots encoded in finite-type invariants. The main result obtained is that the complement of the space of Vassiliev invariants is dense in the space of all numeric knot invariants. Finally, we show that the uniform limit of a sequence of Vassiliev invariants must be a Vassiliev invariant.


1994 ◽  
Vol 03 (02) ◽  
pp. 141-151 ◽  
Author(s):  
S. V. CHMUTOV ◽  
S. V. DUZHIN

We prove that the number of independent Vassiliev knot invariants of order n is less than (n − 1)! — thus strengthening the a priori bound (2n − 1)!!


1997 ◽  
Vol 06 (03) ◽  
pp. 327-358 ◽  
Author(s):  
A. Kricker ◽  
B. Spence ◽  
I. Aitchison

We characterise the cabling operations on the weight systems of finite type knot invariants. The eigenvectors and eigenvalues of this family of operations are described. The canonical deframing projection for these knot invariants is described over the cable eigenbasis. The action of immanent weight systems on general Feynman diagrams is considered, and the highest eigenvalue cabling eigenvectors are shown to be dual to the immanent weight systems. Using these results, we prove a recent conjecture of Bar-Natan and Garoufalidis on cablings of weight systems.


2016 ◽  
Vol 25 (10) ◽  
pp. 1650055 ◽  
Author(s):  
Indranil Biswas ◽  
Niels Leth Gammelgaard

We construct a natural framed weight system on chord diagrams from the curvature tensor of any pseudo-Riemannian symmetric space. These weight systems are of Lie algebra type and realized by the action of the holonomy Lie algebra on a tangent space. Among the Lie algebra weight systems, they are exactly characterized by having the symmetries of the Riemann curvature tensor.


2014 ◽  
Vol 29 (29) ◽  
pp. 1430063 ◽  
Author(s):  
Alexey Sleptsov

We discuss a connection of HOMFLY polynomials with Hurwitz covers and represent a generating function for the HOMFLY polynomial of a given knot in all representations as Hurwitz partition function, i.e. the dependence of the HOMFLY polynomials on representation R is naturally captured by symmetric group characters (cut-and-join eigenvalues). The genus expansion and the loop expansion through Vassiliev invariants explicitly demonstrate this phenomenon. We study the genus expansion and discuss its properties. We also consider the loop expansion in details. In particular, we give an algorithm to calculate Vassiliev invariants, give some examples and discuss relations among Vassiliev invariants. Then we consider superpolynomials for torus knots defined via double affine Hecke algebra. We claim that the superpolynomials are not functions of Hurwitz type: symmetric group characters do not provide an adequate linear basis for their expansions. Deformation to superpolynomials is, however, straightforward in the multiplicative basis: the Casimir operators are beta-deformed to Hamiltonians of the Calogero–Moser–Sutherland system. Applying this trick to the genus and Vassiliev expansions, we observe that the deformation is fully straightforward only for the thin knots. Beyond the family of thin knots additional algebraically independent terms appear in the Vassiliev expansions. This can suggest that the superpolynomials do in fact contain more information about knots than the colored HOMFLY and Kauffman polynomials.


1996 ◽  
Vol 05 (02) ◽  
pp. 173-181 ◽  
Author(s):  
GREG KUPERBERG

We discuss the consequences of the possibility that Vassiliev invariants do not detect knot invertibility as well as the fact that quantum Lie group invariants are known not to do so. On the other hand, finite group invariants, such as the set of homomorphisms from the knot group to M11, can detect knot invertibility. For many natural classes of knot invariants, including Vassiliev invariants and quantum Lie group invariants, we can conclude that the invariants either distinguish all oriented knots, or there exist prime, unoriented knots which they do not distinguish.


Sign in / Sign up

Export Citation Format

Share Document