ON A LOCAL MOVE FOR VIRTUAL KNOTS AND LINKS

2009 ◽  
Vol 18 (11) ◽  
pp. 1577-1596 ◽  
Author(s):  
TOSHIYUKI OIKAWA

We define a local move called a CF-move on virtual link diagrams, and show that any virtual knot can be deformed into a trivial knot by using generalized Reidemeister moves and CF-moves. Moreover, we define a new virtual link invariant n(L) for a virtual 2-component link L whose virtual linking number is an integer. Then we give necessary and sufficient conditions for two virtual 2-component links to be deformed into each other by using generalized Reidemeister moves and CF-moves in terms of a virtual linking number and n(L).

Symmetry ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 15
Author(s):  
Amrendra Gill ◽  
Maxim Ivanov ◽  
Madeti Prabhakar ◽  
Andrei Vesnin

F-polynomials for virtual knots were defined by Kaur, Prabhakar and Vesnin in 2018 using flat virtual knot invariants. These polynomials naturally generalize Kauffman’s affine index polynomial and use smoothing in the classical crossing of a virtual knot diagram. In this paper, we introduce weight functions for ordered orientable virtual and flat virtual links. A flat virtual link is an equivalence class of virtual links with respect to a local symmetry changing a type of classical crossing in a diagram. By considering three types of smoothing in classical crossings of a virtual link diagram and suitable weight functions, there is provided a recurrent construction for new invariants. It is demonstrated by explicit examples that newly defined polynomial invariants are stronger than F-polynomials.


2017 ◽  
Vol 26 (12) ◽  
pp. 1750072 ◽  
Author(s):  
Haruko A. Miyazawa ◽  
Kodai Wada ◽  
Akira Yasuhara

A virtual link diagram is even if the virtual crossings divide each component into an even number of arcs. The set of even virtual link diagrams is closed under classical and virtual Reidemeister moves, and it contains the set of classical link diagrams. For an even virtual link diagram, we define a certain linking invariant which is similar to the linking number. In contrast to the usual linking number, our linking invariant is not preserved under the forbidden moves. In particular, for two fused isotopic even virtual link diagrams, the difference between the linking invariants of them gives a lower bound of the minimal number of forbidden moves needed to deform one into the other. Moreover, we give an example which shows that the lower bound is best possible.


2013 ◽  
Vol 22 (13) ◽  
pp. 1350073 ◽  
Author(s):  
YOUNG HO IM ◽  
KYOUNG IL PARK

We introduce a parity of classical crossings of virtual link diagrams which extends the Gaussian parity of virtual knot diagrams and the odd writhe of virtual links that extends that of virtual knots introduced by Kauffman [A self-linking invariants of virtual knots, Fund. Math.184 (2004) 135–158]. Also, we introduce a multi-variable polynomial invariant for virtual links by using the parity of classical crossings, which refines the index polynomial introduced in [Index polynomial invariants of virtual links, J. Knot Theory Ramifications19(5) (2010) 709–725]. As consequences, we give some properties of our invariant, and raise some examples.


2017 ◽  
Vol 26 (03) ◽  
pp. 1741001 ◽  
Author(s):  
Heather A. Dye ◽  
Aaron Kaestner ◽  
Louis H. Kauffman

The paper contains an essentially self-contained treatment of Khovanov homology, Khovanov–Lee homology as well as the Rasmussen invariant for virtual knots and virtual knot cobordisms which directly applies as well to classical knots and classical knot cobordisms. We give an alternate formulation for the Manturov definition [34] of Khovanov homology [25], [26] for virtual knots and links with arbitrary coefficients. This approach uses cut loci on the knot diagram to induce a conjugation operator in the Frobenius algebra. We use this to show that a large class of virtual knots with unit Jones polynomial is non-classical, proving a conjecture in [20] and [10]. We then discuss the implications of the maps induced in the aforementioned theory to the universal Frobenius algebra [27] for virtual knots. Next we show how one can apply the Karoubi envelope approach of Bar-Natan and Morrison [3] on abstract link diagrams [17] with cross cuts to construct the canonical generators of the Khovanov–Lee homology [30]. Using these canonical generators we derive a generalization of the Rasmussen invariant [39] for virtual knot cobordisms and generalize Rasmussen’s result on the slice genus for positive knots to the case of positive virtual knots. It should also be noted that this generalization of the Rasmussen invariant provides an easy to compute obstruction to knot cobordisms in [Formula: see text] in the sense of Turaev [42].


2005 ◽  
Vol 14 (08) ◽  
pp. 1045-1075 ◽  
Author(s):  
H. A. DYE ◽  
LOUIS H. KAUFFMAN

The Witten–Reshetikhin–Turaev invariant of classical link diagrams is generalized to virtual link diagrams. This invariant is unchanged by the framed Reidemeister moves and the Kirby calculus. As a result, it is also an invariant of the 3-manifolds represented by the classical link diagrams. This generalization is used to demonstrate that there are virtual knot diagrams with a non-trivial Witten–Reshetikhin–Turaev invariant and trivial 3-manifold fundamental group.


2012 ◽  
Vol 21 (13) ◽  
pp. 1240010 ◽  
Author(s):  
VASSILY OLEGOVICH MANTUROV ◽  
HANG WANG

The notion of free link is a generalized notion of virtual link. In this paper we define the group of free braids, prove the Alexander theorem, that all free links can be obtained as closures of free braids and prove a Markov theorem, which gives necessary and sufficient conditions for two free braids to have the same free link closure. Our result is expected to be useful for study of the topology invariants for free knots and links.


2015 ◽  
Vol 24 (13) ◽  
pp. 1541008 ◽  
Author(s):  
Louis H. Kauffman

This paper studies rotational virtual knot theory and its relationship with quantum link invariants. Every quantum link invariant for classical knots and links extends to an invariant of rotational virtual knots and links. We give examples of non-trivial rotational virtuals that are undectable by quantum invariants.


2017 ◽  
Vol 26 (12) ◽  
pp. 1750073 ◽  
Author(s):  
Kanako Oshiro ◽  
Ayaka Shimizu ◽  
Yoshiro Yaguchi

We introduce an up–down coloring of a virtual-link (or classical-link) diagram. The colorabilities give a lower bound of the minimum number of Reidemeister moves of type II which are needed between two [Formula: see text]-component virtual-link (or classical-link) diagrams. By using the notion of a quandle cocycle invariant, we give a method to detect the necessity of Reidemeister moves of type II between two given virtual-knot (or classical-knot) diagrams. As an application, we show that for any virtual-knot diagram [Formula: see text], there exists a diagram [Formula: see text] representing the same virtual-knot such that any sequence of generalized Reidemeister moves between them includes at least one Reidemeister move of type II.


2000 ◽  
Vol 09 (06) ◽  
pp. 797-812 ◽  
Author(s):  
SE-GOO KIM

Virtual knots, defined by Kauffman, provide a natural generalization of classical knots. Most invariants of knots extend in a natural way to give invariants of virtual knots. In this paper we study the fundamental groups of virtual knots and observe several new and unexpected phenomena. In the classical setting, if the longitude of a knot is trivial in the knot group then the group is infinite cyclic. We show that for any classical knot group there is a virtual knot with that group and trivial longitude. It is well known that the second homology of a classical knot group is trivial. We provide counterexamples of this for virtual knots. For an arbitrary group G, we give necessary and sufficient conditions for the existence of a virtual knot group that maps onto G with specified behavior on the peripheral subgroup. These conditions simplify those that arise in the classical setting.


2013 ◽  
Vol 22 (04) ◽  
pp. 1340006
Author(s):  
KARENE CHU

Virtual knot theory, introduced by Kauffman [Virtual Knot theory, European J. Combin.20 (1999) 663–690, arXiv:math.GT/9811028], is a generalization of classical knot theory of interest because its finite-type invariant theory is potentially a topological interpretation [D. Bar-Natan, u, v, w-knots: Topology, Combinatorics and low and high algebra] of Etingof and Kazhdan's theory of quantization of Lie bi-algebras [Quantization of Lie Bialgebras, I, Selecta Math. (N.S.) 2 (1996) 1–41, arXiv:q-alg/9506005]. Classical knots inject into virtual knots [G. Kuperberg, What is Virtual Link? Algebr. Geom. Topol.3 (2003) 587–591, arXiv:math.GT/0208039], and flat virtual knots [V. O. Manturov, On free knots, preprint (2009), arXiv:0901.2214; On free knots and links, preprint (2009), arXiv:0902.0127] is the quotient of virtual knots which equates the real positive and negative crossings, and in this sense is complementary to classical knot theory within virtual knot theory. We completely classify flat virtual tangles with no closed components (pure tangles). This classification can be used as an invariant on virtual pure tangles and virtual braids.


Sign in / Sign up

Export Citation Format

Share Document