scholarly journals Up–down colorings of virtual-link diagrams and the necessity of Reidemeister moves of type II

2017 ◽  
Vol 26 (12) ◽  
pp. 1750073 ◽  
Author(s):  
Kanako Oshiro ◽  
Ayaka Shimizu ◽  
Yoshiro Yaguchi

We introduce an up–down coloring of a virtual-link (or classical-link) diagram. The colorabilities give a lower bound of the minimum number of Reidemeister moves of type II which are needed between two [Formula: see text]-component virtual-link (or classical-link) diagrams. By using the notion of a quandle cocycle invariant, we give a method to detect the necessity of Reidemeister moves of type II between two given virtual-knot (or classical-knot) diagrams. As an application, we show that for any virtual-knot diagram [Formula: see text], there exists a diagram [Formula: see text] representing the same virtual-knot such that any sequence of generalized Reidemeister moves between them includes at least one Reidemeister move of type II.

2005 ◽  
Vol 14 (08) ◽  
pp. 1045-1075 ◽  
Author(s):  
H. A. DYE ◽  
LOUIS H. KAUFFMAN

The Witten–Reshetikhin–Turaev invariant of classical link diagrams is generalized to virtual link diagrams. This invariant is unchanged by the framed Reidemeister moves and the Kirby calculus. As a result, it is also an invariant of the 3-manifolds represented by the classical link diagrams. This generalization is used to demonstrate that there are virtual knot diagrams with a non-trivial Witten–Reshetikhin–Turaev invariant and trivial 3-manifold fundamental group.


2017 ◽  
Vol 26 (12) ◽  
pp. 1750072 ◽  
Author(s):  
Haruko A. Miyazawa ◽  
Kodai Wada ◽  
Akira Yasuhara

A virtual link diagram is even if the virtual crossings divide each component into an even number of arcs. The set of even virtual link diagrams is closed under classical and virtual Reidemeister moves, and it contains the set of classical link diagrams. For an even virtual link diagram, we define a certain linking invariant which is similar to the linking number. In contrast to the usual linking number, our linking invariant is not preserved under the forbidden moves. In particular, for two fused isotopic even virtual link diagrams, the difference between the linking invariants of them gives a lower bound of the minimal number of forbidden moves needed to deform one into the other. Moreover, we give an example which shows that the lower bound is best possible.


2009 ◽  
Vol 18 (11) ◽  
pp. 1577-1596 ◽  
Author(s):  
TOSHIYUKI OIKAWA

We define a local move called a CF-move on virtual link diagrams, and show that any virtual knot can be deformed into a trivial knot by using generalized Reidemeister moves and CF-moves. Moreover, we define a new virtual link invariant n(L) for a virtual 2-component link L whose virtual linking number is an integer. Then we give necessary and sufficient conditions for two virtual 2-component links to be deformed into each other by using generalized Reidemeister moves and CF-moves in terms of a virtual linking number and n(L).


2013 ◽  
Vol 22 (13) ◽  
pp. 1350073 ◽  
Author(s):  
YOUNG HO IM ◽  
KYOUNG IL PARK

We introduce a parity of classical crossings of virtual link diagrams which extends the Gaussian parity of virtual knot diagrams and the odd writhe of virtual links that extends that of virtual knots introduced by Kauffman [A self-linking invariants of virtual knots, Fund. Math.184 (2004) 135–158]. Also, we introduce a multi-variable polynomial invariant for virtual links by using the parity of classical crossings, which refines the index polynomial introduced in [Index polynomial invariants of virtual links, J. Knot Theory Ramifications19(5) (2010) 709–725]. As consequences, we give some properties of our invariant, and raise some examples.


2000 ◽  
Vol 09 (01) ◽  
pp. 93-106 ◽  
Author(s):  
Naoko KAMADA ◽  
Seiichi KAMADA

The notion of an abstract link diagram is re-introduced with a relationship with Kauffman's virtual knot theory. It is prove that there is a bijection from the equivalence classes of virtual link diagrams to those of abstract link diagrams. Using abstract link diagrams, we have a geometric interpretation of the group and the quandle of a virtual knot. A generalization to higher dimensional cases is introduced, and the state-sum invariants are treated.


2019 ◽  
Vol 30 (14) ◽  
pp. 1950072 ◽  
Author(s):  
Naoko Kamada

A virtual link diagram is called mod [Formula: see text] almost classical if it admits an Alexander numbering valued in integers modulo [Formula: see text], and a virtual link is called mod [Formula: see text] almost classical if it has a mod [Formula: see text] almost classical diagram as a representative. In this paper, we introduce a method of constructing a mod [Formula: see text] almost classical virtual link diagram from a given virtual link diagram, which we call an [Formula: see text]-fold cyclic covering diagram. The main result is that [Formula: see text]-fold cyclic covering diagrams obtained from two equivalent virtual link diagrams are equivalent. Thus, we have a well-defined map from the set of virtual links to the set of mod [Formula: see text] almost classical virtual links. Some applications are also given.


2003 ◽  
Vol 12 (06) ◽  
pp. 781-803 ◽  
Author(s):  
Teruhisa Kadokami

J. S. Carter, S. Kamada and M. Saito showed that there is one to one correspondence between the virtual Reidemeister equivalence classes of virtual link diagrams and the stable equivalence classes of link diagrams on compact oriented surfaces. Using the result, we show how to obtain the supporting genus of a projected virtual link by a geometric method. From this result, we show that a certain virtual knot which cannot be judged to be non-trivial by known algebraic invariants is non-trivial, and we suggest to classify the equivalence classes of projected virtual links by using the supporting genus.


1993 ◽  
Vol 02 (03) ◽  
pp. 251-284 ◽  
Author(s):  
J. SCOTT CARTER ◽  
MASAHICO SAITO

A movie description of a surface embedded in 4-space is a sequence of knot and link diagrams obtained from a projection of the surface to 3-space by taking 2-dimensional cross sections perpendicular to a fixed direction. In the cross sections, an immersed collection of curves appears, and these are lifted to knot diagrams by using the projection direction from 4-space. We give a set of 15 moves to movies (called movie moves) such that two movies represent isotopic surfaces if and only if there is a sequence of moves from this set that takes one to the other. This result generalizes the Roseman moves which are moves on projections where a height function has not been specified. The first 7 of the movie moves are height function parametrized versions of those given by Roseman. The remaining 8 are moves in which the topology of the projection remains unchanged.


2017 ◽  
Vol 26 (10) ◽  
pp. 1750051
Author(s):  
Myeong-Ju Jeong

When two virtual knot diagrams are virtually isotopic, there is a sequence of Reidemeister moves and virtual moves relating them. I introduced a polynomial [Formula: see text] of a virtual knot diagram [Formula: see text] and gave lower bounds for the number of Reidemeister moves in deformation of virtually isotopic knot diagrams by using [Formula: see text]. In this paper, I introduce bridge diagrams and polynomials of virtual knot diagrams based on parity of crossings, and show that the polynomials give lower bounds for the number of the third Reidemeister moves. I give an example which shows that the result is distinguished from that obtained from [Formula: see text].


2015 ◽  
Vol 24 (02) ◽  
pp. 1550010 ◽  
Author(s):  
Myeong-Ju Jeong

In 2006 C. Hayashi gave a lower bound for the number of Reidemeister moves in deformation of two equivalent knot diagrams by using writhe and cowrithe. It can be naturally extended for two virtually isotopic virtual knot diagrams. We introduce a polynomial qK(t) of a virtual knot diagram K and give lower bounds for the number of Reidemeister moves in deformation of two virtually isotopic knots by using qK(t). We give an example which shows that the polynomial qK(t) is useful to map out a sequence of Reidemeister moves to deform a virtual knot diagram to another virtually isotopic one.


Sign in / Sign up

Export Citation Format

Share Document