A sequence of polynomial invariants for Gauss diagrams

2017 ◽  
Vol 26 (07) ◽  
pp. 1750039 ◽  
Author(s):  
Young Ho Im ◽  
Sera Kim

We introduce a sequence of polynomial invariants for Gauss diagrams which are one-to-one correspondence with virtual knot diagrams. Also, we give some properties of these polynomials and examples.

2013 ◽  
Vol 22 (13) ◽  
pp. 1350073 ◽  
Author(s):  
YOUNG HO IM ◽  
KYOUNG IL PARK

We introduce a parity of classical crossings of virtual link diagrams which extends the Gaussian parity of virtual knot diagrams and the odd writhe of virtual links that extends that of virtual knots introduced by Kauffman [A self-linking invariants of virtual knots, Fund. Math.184 (2004) 135–158]. Also, we introduce a multi-variable polynomial invariant for virtual links by using the parity of classical crossings, which refines the index polynomial introduced in [Index polynomial invariants of virtual links, J. Knot Theory Ramifications19(5) (2010) 709–725]. As consequences, we give some properties of our invariant, and raise some examples.


2020 ◽  
Vol 29 (02) ◽  
pp. 2040004 ◽  
Author(s):  
Denis P. Ilyutko ◽  
Vassily O. Manturov

In V. O. Manturov, On free knots, preprint (2009), arXiv:math.GT/0901.2214], the second named author constructed the bracket invariant [Formula: see text] of virtual knots valued in pictures (linear combinations of virtual knot diagrams with some crossing information omitted), such that for many diagrams [Formula: see text], the following formula holds: [Formula: see text], where [Formula: see text] is the underlying graph of the diagram, i.e. the value of the invariant on a diagram equals the diagram itself with some crossing information omitted. This phenomenon allows one to reduce many questions about virtual knots to questions about their diagrams. In [S. Nelson, M. E. Orrison and V. Rivera, Quantum enhancements and biquandle brackets, preprint (2015), arXiv:math.GT/1508.06573], the authors discovered the following phenomenon: having a biquandle coloring of a certain knot, one can enhance various state-sum invariants (say, Kauffman bracket) by using various coefficients depending on colors. Taking into account that the parity can be treated in terms of biquandles, we bring together the two ideas from these papers and construct the picture-valued parity-biquandle bracket for classical and virtual knots. This is an invariant of virtual knots valued in pictures. Both the parity bracket and Nelson–Orrison–Rivera invariants are partial cases of this invariant, hence this invariant enjoys many properties of various kinds. Recently, the authors together with E. Horvat and S. Kim have found that the picture-valued phenomenon works in the classical case.


2003 ◽  
Vol 12 (06) ◽  
pp. 781-803 ◽  
Author(s):  
Teruhisa Kadokami

J. S. Carter, S. Kamada and M. Saito showed that there is one to one correspondence between the virtual Reidemeister equivalence classes of virtual link diagrams and the stable equivalence classes of link diagrams on compact oriented surfaces. Using the result, we show how to obtain the supporting genus of a projected virtual link by a geometric method. From this result, we show that a certain virtual knot which cannot be judged to be non-trivial by known algebraic invariants is non-trivial, and we suggest to classify the equivalence classes of projected virtual links by using the supporting genus.


2017 ◽  
Vol 26 (10) ◽  
pp. 1750051
Author(s):  
Myeong-Ju Jeong

When two virtual knot diagrams are virtually isotopic, there is a sequence of Reidemeister moves and virtual moves relating them. I introduced a polynomial [Formula: see text] of a virtual knot diagram [Formula: see text] and gave lower bounds for the number of Reidemeister moves in deformation of virtually isotopic knot diagrams by using [Formula: see text]. In this paper, I introduce bridge diagrams and polynomials of virtual knot diagrams based on parity of crossings, and show that the polynomials give lower bounds for the number of the third Reidemeister moves. I give an example which shows that the result is distinguished from that obtained from [Formula: see text].


2015 ◽  
Vol 24 (02) ◽  
pp. 1550010 ◽  
Author(s):  
Myeong-Ju Jeong

In 2006 C. Hayashi gave a lower bound for the number of Reidemeister moves in deformation of two equivalent knot diagrams by using writhe and cowrithe. It can be naturally extended for two virtually isotopic virtual knot diagrams. We introduce a polynomial qK(t) of a virtual knot diagram K and give lower bounds for the number of Reidemeister moves in deformation of two virtually isotopic knots by using qK(t). We give an example which shows that the polynomial qK(t) is useful to map out a sequence of Reidemeister moves to deform a virtual knot diagram to another virtually isotopic one.


Symmetry ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 15
Author(s):  
Amrendra Gill ◽  
Maxim Ivanov ◽  
Madeti Prabhakar ◽  
Andrei Vesnin

F-polynomials for virtual knots were defined by Kaur, Prabhakar and Vesnin in 2018 using flat virtual knot invariants. These polynomials naturally generalize Kauffman’s affine index polynomial and use smoothing in the classical crossing of a virtual knot diagram. In this paper, we introduce weight functions for ordered orientable virtual and flat virtual links. A flat virtual link is an equivalence class of virtual links with respect to a local symmetry changing a type of classical crossing in a diagram. By considering three types of smoothing in classical crossings of a virtual link diagram and suitable weight functions, there is provided a recurrent construction for new invariants. It is demonstrated by explicit examples that newly defined polynomial invariants are stronger than F-polynomials.


2020 ◽  
Vol 29 (12) ◽  
pp. 2050073
Author(s):  
Joonoh Kim

In this study, we describe a method of making an invariant of virtual knots defined in terms of an integer labeling of the flat virtual knot diagram. We give an invariant of flat virtual knots and virtual doodles modifying the previous invariant.


2017 ◽  
Vol 26 (13) ◽  
pp. 1750090
Author(s):  
Sumiko Horiuchi ◽  
Yoshiyuki Ohyama

We consider a local move, denoted by [Formula: see text], on knot diagrams or virtual knot diagrams.If two (virtual) knots [Formula: see text] and [Formula: see text] are transformed into each other by a finite sequence of [Formula: see text] moves, the [Formula: see text] distance between [Formula: see text] and [Formula: see text] is the minimum number of times of [Formula: see text] moves needed to transform [Formula: see text] into [Formula: see text]. By [Formula: see text], we denote the set of all (virtual) knots which can be transformed into a (virtual) knot [Formula: see text] by [Formula: see text] moves. A geodesic graph for [Formula: see text] is the graph which satisfies the following: The vertex set consists of (virtual) knots in [Formula: see text] and for any two vertices [Formula: see text] and [Formula: see text], the distance on the graph from [Formula: see text] to [Formula: see text] coincides with the [Formula: see text] distance between [Formula: see text] and [Formula: see text]. When we consider virtual knots and a crossing change as a local move [Formula: see text], we show that the [Formula: see text]-dimensional lattice graph for any given natural number [Formula: see text] and any tree are geodesic graphs for [Formula: see text].


2020 ◽  
Vol 29 (10) ◽  
pp. 2042003
Author(s):  
Zhiyun Cheng ◽  
Hongzhu Gao ◽  
Mengjian Xu

In this paper, we discuss how to define a chord index via smoothing a real crossing point of a virtual knot diagram. Several polynomial invariants of virtual knots and links can be recovered from this general construction. We also explain how to extend this construction from virtual knots to flat virtual knots.


2006 ◽  
Vol 15 (03) ◽  
pp. 327-338 ◽  
Author(s):  
WILLIAM J. SCHELLHORN

In 2002, Hrencecin and Kauffman defined a filamentation invariant on oriented chord diagrams that may determine whether the corresponding flat virtual knot diagrams are non-trivial. A virtual knot diagram is non-classical if its related flat virtual knot diagram is non-trivial. Hence filamentations can be used to detect non-classical virtual knots. We extend these filamentation techniques to virtual links with more than one component. We also give examples of virtual links that they can detect as non-classical.


Sign in / Sign up

Export Citation Format

Share Document