Reidemeister moves and a polynomial of virtual knot diagrams

2015 ◽  
Vol 24 (02) ◽  
pp. 1550010 ◽  
Author(s):  
Myeong-Ju Jeong

In 2006 C. Hayashi gave a lower bound for the number of Reidemeister moves in deformation of two equivalent knot diagrams by using writhe and cowrithe. It can be naturally extended for two virtually isotopic virtual knot diagrams. We introduce a polynomial qK(t) of a virtual knot diagram K and give lower bounds for the number of Reidemeister moves in deformation of two virtually isotopic knots by using qK(t). We give an example which shows that the polynomial qK(t) is useful to map out a sequence of Reidemeister moves to deform a virtual knot diagram to another virtually isotopic one.


2017 ◽  
Vol 26 (10) ◽  
pp. 1750051
Author(s):  
Myeong-Ju Jeong

When two virtual knot diagrams are virtually isotopic, there is a sequence of Reidemeister moves and virtual moves relating them. I introduced a polynomial [Formula: see text] of a virtual knot diagram [Formula: see text] and gave lower bounds for the number of Reidemeister moves in deformation of virtually isotopic knot diagrams by using [Formula: see text]. In this paper, I introduce bridge diagrams and polynomials of virtual knot diagrams based on parity of crossings, and show that the polynomials give lower bounds for the number of the third Reidemeister moves. I give an example which shows that the result is distinguished from that obtained from [Formula: see text].



2012 ◽  
Vol 21 (10) ◽  
pp. 1250099 ◽  
Author(s):  
CHUICHIRO HAYASHI ◽  
MIWA HAYASHI ◽  
MINORI SAWADA ◽  
SAYAKA YAMADA

Arnold introduced invariants J+, J- and St for generic planar curves. It is known that both J+/2 + St and J-/2 + St are invariants for generic spherical curves. Applying these invariants to underlying curves of knot diagrams, we can obtain lower bounds for the number of Reidemeister moves required for unknotting. J- /2 + St works well to count the minimum number of unmatched RII moves. However, it works only up to a factor of two for RI moves. Let w denote the writhe for a knot diagram. We show that J-/2 + St ± w/2 also gives sharp counts for the number of required RI moves, and demonstrate that it gives a precise estimate for a certain family of diagrams of the unknot with the underlying curve r = 2 + cos (nθ/(n + 1)), (0 ≤ θ ≤ 2(n + 1)π).



2005 ◽  
Vol 14 (08) ◽  
pp. 1045-1075 ◽  
Author(s):  
H. A. DYE ◽  
LOUIS H. KAUFFMAN

The Witten–Reshetikhin–Turaev invariant of classical link diagrams is generalized to virtual link diagrams. This invariant is unchanged by the framed Reidemeister moves and the Kirby calculus. As a result, it is also an invariant of the 3-manifolds represented by the classical link diagrams. This generalization is used to demonstrate that there are virtual knot diagrams with a non-trivial Witten–Reshetikhin–Turaev invariant and trivial 3-manifold fundamental group.



2017 ◽  
Vol 26 (12) ◽  
pp. 1750073 ◽  
Author(s):  
Kanako Oshiro ◽  
Ayaka Shimizu ◽  
Yoshiro Yaguchi

We introduce an up–down coloring of a virtual-link (or classical-link) diagram. The colorabilities give a lower bound of the minimum number of Reidemeister moves of type II which are needed between two [Formula: see text]-component virtual-link (or classical-link) diagrams. By using the notion of a quandle cocycle invariant, we give a method to detect the necessity of Reidemeister moves of type II between two given virtual-knot (or classical-knot) diagrams. As an application, we show that for any virtual-knot diagram [Formula: see text], there exists a diagram [Formula: see text] representing the same virtual-knot such that any sequence of generalized Reidemeister moves between them includes at least one Reidemeister move of type II.



Author(s):  
Philipp Korablev ◽  
Vladimir Tarkaev

Knotoids are open ended knot diagrams regarded up to Reidemeister moves and isotopies. The notion is introduced by Turaev in 2012. Two most important numeric characteristics of a knotoid are the crossing number and the height. The latter is the least number of intersections between a diagram and an arc connecting its endpoints, where the minimum is taken over all representative diagrams and all such arcs which are disjoint from crossings. In the paper, we answer the question: are there any relations between the crossing number and the height of a knotoid. We prove that the crossing number of a knotoid is greater than or equal to twice the height of the knotoid. Combining the inequality with known lower bounds of the height we obtain a lower bounds of the crossing number of a knotoid via the extended bracket polynomial, the affine index polynomial and the arrow polynomial of the knotoid. As an application of our result we prove an upper bound for the length of a bridge in a minimal diagram of a classical knot: the number of crossings in a minimal diagram of a knot is greater than or equal to three times the length of a longest bridge in the diagram.



10.37236/1188 ◽  
1994 ◽  
Vol 1 (1) ◽  
Author(s):  
Geoffrey Exoo

For $k \geq 5$, we establish new lower bounds on the Schur numbers $S(k)$ and on the k-color Ramsey numbers of $K_3$.



Algorithms ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 164
Author(s):  
Tobias Rupp ◽  
Stefan Funke

We prove a Ω(n) lower bound on the query time for contraction hierarchies (CH) as well as hub labels, two popular speed-up techniques for shortest path routing. Our construction is based on a graph family not too far from subgraphs that occur in real-world road networks, in particular, it is planar and has a bounded degree. Additionally, we borrow ideas from our lower bound proof to come up with instance-based lower bounds for concrete road network instances of moderate size, reaching up to 96% of an upper bound given by a constructed CH. For a variant of our instance-based schema applied to some special graph classes, we can even show matching upper and lower bounds.



2021 ◽  
Vol 13 (3) ◽  
pp. 1-21
Author(s):  
Suryajith Chillara

In this article, we are interested in understanding the complexity of computing multilinear polynomials using depth four circuits in which the polynomial computed at every node has a bound on the individual degree of r ≥ 1 with respect to all its variables (referred to as multi- r -ic circuits). The goal of this study is to make progress towards proving superpolynomial lower bounds for general depth four circuits computing multilinear polynomials, by proving better bounds as the value of r increases. Recently, Kayal, Saha and Tavenas (Theory of Computing, 2018) showed that any depth four arithmetic circuit of bounded individual degree r computing an explicit multilinear polynomial on n O (1) variables and degree d must have size at least ( n / r 1.1 ) Ω(√ d / r ) . This bound, however, deteriorates as the value of r increases. It is a natural question to ask if we can prove a bound that does not deteriorate as the value of r increases, or a bound that holds for a larger regime of r . In this article, we prove a lower bound that does not deteriorate with increasing values of r , albeit for a specific instance of d = d ( n ) but for a wider range of r . Formally, for all large enough integers n and a small constant η, we show that there exists an explicit polynomial on n O (1) variables and degree Θ (log 2 n ) such that any depth four circuit of bounded individual degree r ≤ n η must have size at least exp(Ω(log 2 n )). This improvement is obtained by suitably adapting the complexity measure of Kayal et al. (Theory of Computing, 2018). This adaptation of the measure is inspired by the complexity measure used by Kayal et al. (SIAM J. Computing, 2017).



2020 ◽  
Vol 30 (1) ◽  
pp. 175-192
Author(s):  
NathanaËl Fijalkow

Abstract This paper studies the complexity of languages of finite words using automata theory. To go beyond the class of regular languages, we consider infinite automata and the notion of state complexity defined by Karp. Motivated by the seminal paper of Rabin from 1963 introducing probabilistic automata, we study the (deterministic) state complexity of probabilistic languages and prove that probabilistic languages can have arbitrarily high deterministic state complexity. We then look at alternating automata as introduced by Chandra, Kozen and Stockmeyer: such machines run independent computations on the word and gather their answers through boolean combinations. We devise a lower bound technique relying on boundedly generated lattices of languages, and give two applications of this technique. The first is a hierarchy theorem, stating that there are languages of arbitrarily high polynomial alternating state complexity, and the second is a linear lower bound on the alternating state complexity of the prime numbers written in binary. This second result strengthens a result of Hartmanis and Shank from 1968, which implies an exponentially worse lower bound for the same model.



Algorithmica ◽  
2021 ◽  
Author(s):  
Seungbum Jo ◽  
Rahul Lingala ◽  
Srinivasa Rao Satti

AbstractWe consider the problem of encoding two-dimensional arrays, whose elements come from a total order, for answering $${\text{Top-}}{k}$$ Top- k queries. The aim is to obtain encodings that use space close to the information-theoretic lower bound, which can be constructed efficiently. For an $$m \times n$$ m × n array, with $$m \le n$$ m ≤ n , we first propose an encoding for answering 1-sided $${\textsf {Top}}{\text {-}}k{}$$ Top - k queries, whose query range is restricted to $$[1 \dots m][1 \dots a]$$ [ 1 ⋯ m ] [ 1 ⋯ a ] , for $$1 \le a \le n$$ 1 ≤ a ≤ n . Next, we propose an encoding for answering for the general (4-sided) $${\textsf {Top}}{\text {-}}k{}$$ Top - k queries that takes $$(m\lg {{(k+1)n \atopwithdelims ()n}}+2nm(m-1)+o(n))$$ ( m lg ( k + 1 ) n n + 2 n m ( m - 1 ) + o ( n ) ) bits, which generalizes the joint Cartesian tree of Golin et al. [TCS 2016]. Compared with trivial $$O(nm\lg {n})$$ O ( n m lg n ) -bit encoding, our encoding takes less space when $$m = o(\lg {n})$$ m = o ( lg n ) . In addition to the upper bound results for the encodings, we also give lower bounds on encodings for answering 1 and 4-sided $${\textsf {Top}}{\text {-}}k{}$$ Top - k queries, which show that our upper bound results are almost optimal.



Sign in / Sign up

Export Citation Format

Share Document