Geodesic graphs for a homotopy class of virtual knots

2017 ◽  
Vol 26 (13) ◽  
pp. 1750090
Author(s):  
Sumiko Horiuchi ◽  
Yoshiyuki Ohyama

We consider a local move, denoted by [Formula: see text], on knot diagrams or virtual knot diagrams.If two (virtual) knots [Formula: see text] and [Formula: see text] are transformed into each other by a finite sequence of [Formula: see text] moves, the [Formula: see text] distance between [Formula: see text] and [Formula: see text] is the minimum number of times of [Formula: see text] moves needed to transform [Formula: see text] into [Formula: see text]. By [Formula: see text], we denote the set of all (virtual) knots which can be transformed into a (virtual) knot [Formula: see text] by [Formula: see text] moves. A geodesic graph for [Formula: see text] is the graph which satisfies the following: The vertex set consists of (virtual) knots in [Formula: see text] and for any two vertices [Formula: see text] and [Formula: see text], the distance on the graph from [Formula: see text] to [Formula: see text] coincides with the [Formula: see text] distance between [Formula: see text] and [Formula: see text]. When we consider virtual knots and a crossing change as a local move [Formula: see text], we show that the [Formula: see text]-dimensional lattice graph for any given natural number [Formula: see text] and any tree are geodesic graphs for [Formula: see text].

Author(s):  
SUMIKO HORIUCHI ◽  
YOSHIYUKI OHYAMA

AbstractWe consider a local move on a knot diagram, where we denote the local move by λ. If two knots K1 and K2 are transformed into each other by a finite sequence of λ-moves, the λ-distance between K1 and K2 is the minimum number of times of λ-moves needed to transform K1 into K2. A λ-distance satisfies the axioms of distance. A two dimensional lattice of knots by λ-moves is the two dimensional lattice graph which satisfies the following: the vertex set consists of oriented knots and for any two vertices K1 and K2, the distance on the graph from K1 to K2 coincides with the λ-distance between K1 and K2, where the distance on the graph means the number of edges of the shortest path which connects the two knots. Local moves called Cn-moves are closely related to Vassiliev invariants. In this paper, we show that for any given knot K, there is a two dimensional lattice of knots by C2m-moves with the vertex K.


2018 ◽  
Vol 27 (08) ◽  
pp. 1850049
Author(s):  
Takuji Nakamura ◽  
Yasutaka Nakanishi ◽  
Shin Satoh

A state of a virtual knot diagram [Formula: see text] is a collection of circles obtained from [Formula: see text] by splicing all the real crossings. For each integer [Formula: see text], we denote by [Formula: see text] the number of states of [Formula: see text] with [Formula: see text] circles. The [Formula: see text]-state number [Formula: see text] of a virtual knot [Formula: see text] is the minimum number of [Formula: see text] for [Formula: see text] of [Formula: see text]. Let [Formula: see text] be the set of virtual knots [Formula: see text] with [Formula: see text] for an integer [Formula: see text]. In this paper, we study the finiteness of [Formula: see text]. We determine the finiteness of [Formula: see text] for any [Formula: see text] and [Formula: see text] for any [Formula: see text].


2020 ◽  
Vol 29 (02) ◽  
pp. 2040004 ◽  
Author(s):  
Denis P. Ilyutko ◽  
Vassily O. Manturov

In V. O. Manturov, On free knots, preprint (2009), arXiv:math.GT/0901.2214], the second named author constructed the bracket invariant [Formula: see text] of virtual knots valued in pictures (linear combinations of virtual knot diagrams with some crossing information omitted), such that for many diagrams [Formula: see text], the following formula holds: [Formula: see text], where [Formula: see text] is the underlying graph of the diagram, i.e. the value of the invariant on a diagram equals the diagram itself with some crossing information omitted. This phenomenon allows one to reduce many questions about virtual knots to questions about their diagrams. In [S. Nelson, M. E. Orrison and V. Rivera, Quantum enhancements and biquandle brackets, preprint (2015), arXiv:math.GT/1508.06573], the authors discovered the following phenomenon: having a biquandle coloring of a certain knot, one can enhance various state-sum invariants (say, Kauffman bracket) by using various coefficients depending on colors. Taking into account that the parity can be treated in terms of biquandles, we bring together the two ideas from these papers and construct the picture-valued parity-biquandle bracket for classical and virtual knots. This is an invariant of virtual knots valued in pictures. Both the parity bracket and Nelson–Orrison–Rivera invariants are partial cases of this invariant, hence this invariant enjoys many properties of various kinds. Recently, the authors together with E. Horvat and S. Kim have found that the picture-valued phenomenon works in the classical case.


2013 ◽  
Vol 22 (06) ◽  
pp. 1350024 ◽  
Author(s):  
MYEONG-JU JEONG

Nelson and Kanenobu showed that forbidden moves unknot any virtual knot. Similarly a long virtual knot can be unknotted by a finite sequence of forbidden moves. Goussarov, Polyak and Viro introduced finite type invariants of virtual knots and long virtual knots and gave combinatorial representations of finite type invariants. We introduce Fn-moves which generalize the forbidden moves. Assume that two long virtual knots K and K′ are related by a finite sequence of Fn-moves. We show that the values of the finite type invariants of degree 2 of K and K′ are congruent modulo n and give a lower bound for the number of Fn-moves needed to transform K to K′.


2017 ◽  
Vol 10 (01) ◽  
pp. 1750004 ◽  
Author(s):  
R. Khoeilar ◽  
S. M. Sheikholeslami

Let [Formula: see text] be a finite and simple digraph. A [Formula: see text]-rainbow dominating function ([Formula: see text]RDF) of a digraph [Formula: see text] is a function [Formula: see text] from the vertex set [Formula: see text] to the set of all subsets of the set [Formula: see text] such that for any vertex [Formula: see text] with [Formula: see text] the condition [Formula: see text] is fulfilled, where [Formula: see text] is the set of in-neighbors of [Formula: see text]. The weight of a [Formula: see text]RDF [Formula: see text] is the value [Formula: see text]. The [Formula: see text]-rainbow domination number of a digraph [Formula: see text], denoted by [Formula: see text], is the minimum weight of a [Formula: see text]RDF of [Formula: see text]. The [Formula: see text]-rainbow reinforcement number [Formula: see text] of a digraph [Formula: see text] is the minimum number of arcs that must be added to [Formula: see text] in order to decrease the [Formula: see text]-rainbow domination number. In this paper, we initiate the study of [Formula: see text]-rainbow reinforcement number in digraphs and we present some sharp bounds for [Formula: see text]. In particular, we determine the [Formula: see text]-rainbow reinforcement number of some classes of digraphs.


2016 ◽  
Vol 09 (01) ◽  
pp. 1650018 ◽  
Author(s):  
N. Dehgardi ◽  
M. Falahat ◽  
S. M. Sheikholeslami ◽  
Abdollah Khodkar

A [Formula: see text]-rainbow dominating function (2RDF) of a graph [Formula: see text] is a function [Formula: see text] from the vertex set [Formula: see text] to the set of all subsets of the set [Formula: see text] such that for any vertex [Formula: see text] with [Formula: see text] the condition [Formula: see text] is fulfilled, where [Formula: see text] is the open neighborhood of [Formula: see text]. The weight of a 2RDF [Formula: see text] is the value [Formula: see text]. The [Formula: see text]-rainbow domination number of a graph [Formula: see text], denoted by [Formula: see text], is the minimum weight of a 2RDF of G. The [Formula: see text]-rainbow domination subdivision number [Formula: see text] is the minimum number of edges that must be subdivided (each edge in [Formula: see text] can be subdivided at most once) in order to increase the 2-rainbow domination number. It is conjectured that for any connected graph [Formula: see text] of order [Formula: see text], [Formula: see text]. In this paper, we first prove this conjecture for some classes of graphs and then we prove that for any connected graph [Formula: see text] of order [Formula: see text], [Formula: see text].


2013 ◽  
Vol 22 (13) ◽  
pp. 1350073 ◽  
Author(s):  
YOUNG HO IM ◽  
KYOUNG IL PARK

We introduce a parity of classical crossings of virtual link diagrams which extends the Gaussian parity of virtual knot diagrams and the odd writhe of virtual links that extends that of virtual knots introduced by Kauffman [A self-linking invariants of virtual knots, Fund. Math.184 (2004) 135–158]. Also, we introduce a multi-variable polynomial invariant for virtual links by using the parity of classical crossings, which refines the index polynomial introduced in [Index polynomial invariants of virtual links, J. Knot Theory Ramifications19(5) (2010) 709–725]. As consequences, we give some properties of our invariant, and raise some examples.


2006 ◽  
Vol 15 (03) ◽  
pp. 327-338 ◽  
Author(s):  
WILLIAM J. SCHELLHORN

In 2002, Hrencecin and Kauffman defined a filamentation invariant on oriented chord diagrams that may determine whether the corresponding flat virtual knot diagrams are non-trivial. A virtual knot diagram is non-classical if its related flat virtual knot diagram is non-trivial. Hence filamentations can be used to detect non-classical virtual knots. We extend these filamentation techniques to virtual links with more than one component. We also give examples of virtual links that they can detect as non-classical.


2013 ◽  
Vol 22 (03) ◽  
pp. 1350009 ◽  
Author(s):  
MIGIWA SAKURAI

It is known that any virtual knot can be deformed into the trivial knot by a finite sequence of forbidden moves. In this paper, we give the difference of the values obtained from some invariants constructed by Henrich between two virtual knots which can be transformed into each other by a single forbidden move. As a result, we obtain a lower bound of the unknotting number of a virtual knot by forbidden moves.


Author(s):  
Saeed Shaebani ◽  
Saeed Kosari ◽  
Leila Asgharsharghi

Let [Formula: see text] be a positive integer and [Formula: see text] be a simple graph. A restrained [Formula: see text]-rainbow dominating function (R[Formula: see text]RDF) of [Formula: see text] is a function [Formula: see text] from the vertex set [Formula: see text] to the family of all subsets of [Formula: see text], such that every vertex [Formula: see text] with [Formula: see text] satisfies both of the conditions [Formula: see text] and [Formula: see text] simultaneously, where [Formula: see text] denotes the open neighborhood of [Formula: see text]. The weight of an R[Formula: see text]RDF is the value [Formula: see text]. The restrained[Formula: see text]-rainbow domination number of [Formula: see text], denoted by [Formula: see text], is the minimum weight of an R[Formula: see text]RDF of [Formula: see text]. The restrained[Formula: see text]-rainbow reinforcement number [Formula: see text] of [Formula: see text], is defined to be the minimum number of edges that must be added to [Formula: see text] in order to decrease the restrained [Formula: see text]-rainbow domination number. In this paper, we determine the restrained [Formula: see text]-rainbow reinforcement number of some special classes of graphs. Also, we present some bounds on the restrained [Formula: see text]-rainbow reinforcement number of general graphs.


Sign in / Sign up

Export Citation Format

Share Document