ON THE ARITHMETIC 2-BRIDGE KNOTS AND LINK ORBIFOLDS AND A NEW KNOT INVARIANT

1995 ◽  
Vol 04 (01) ◽  
pp. 81-114 ◽  
Author(s):  
HUGH M. HILDEN ◽  
MARIA TERESA LOZANO ◽  
JOSE MARIA MONTESINOS-AMILIBIA

Let (p/q, n) denote the orbifold with singular set the two bridge knot or link p/q and isotropy group cyclic of orden n. An algebraic curve [Formula: see text] (set of zeroes of a polynomial r(x, z)) is associated to p/q parametrizing the representations of [Formula: see text] in PSL [Formula: see text]. The coordinates x, z, are trace(A2)=x, trace(AB)=z where A and B[Formula: see text] are the images of canonical generators a, b of [Formula: see text]. Let (xn, zn) be the point of [Formula: see text] corresponding to the hyperbolic orbifold (p/q, n). We prove the following result: The (orbifold) fundamental group of (p/q, n) is arithmetic if and only if the field Q(xn, zn) has exactly one complex place and ϕ(xn)<ϕ(zn)<2 for every real embedding [Formula: see text]. Consider the angle α for which the cone-manifold (p/q, α) is euclidean. We prove that 2cosα is an algebraic number. Its minimal polynomial (called the h-polynomial) is then a knot invariant. We indicate how to generalize this h-polynomial invariant for any hyperbolic knot. Finally, we compute h-polynomials and arithmeticity of (p/q, n) with p≦40, and (p/q, n) with p≦99q2≡1 mod p. We finish the paper with some open problems.

1933 ◽  
Vol 55 (1/4) ◽  
pp. 255 ◽  
Author(s):  
Egbert R. Van Kampen

2005 ◽  
Vol 14 (02) ◽  
pp. 189-215 ◽  
Author(s):  
GREG FRIEDMAN

The classical knot groups are the fundamental groups of the complements of smooth or piecewise-linear (PL) locally-flat knots. For PL knots that are not locally-flat, there is a pair of interesting groups to study: the fundamental group of the knot complement and that of the complement of the "boundary knot" that occurs around the singular set, the set of points at which the embedding is not locally-flat. If a knot has only point singularities, this is equivalent to studying the groups of a PL locally-flat disk knot and its boundary sphere knot; in this case, we obtain a complete classification of all such group pairs in dimension ≥6. For more general knots, we also obtain complete classifications of these group pairs under certain restrictions on the singularities. Finally, we use spinning constructions to realize further examples of boundary knot groups.


Author(s):  
D. V. Koleda

Algebraic numbers are the roots of integer polynomials. Each algebraic number α is characterized by its minimal polynomial Pα that is a polynomial of minimal positive degree with integer coprime coefficients, α being its root. The degree of α is the degree of this polynomial, and the height of α is the maximum of the absolute values of the coefficients of this polynomial. In this paper we consider the distribution of algebraic numbers α whose degree is fixed and height bounded by a growing parameter Q, and the minimal polynomial Pα is such that the absolute value of its derivative P'α (α) is bounded by a given parameter X. We show that if this bounding parameter X is from a certain range, then as Q → +∞ these algebraic numbers are distributed uniformly in the segment [-1+√2/3.1-√2/3]


2022 ◽  
Author(s):  
Hideaki Ikoma ◽  
Shu Kawaguchi ◽  
Atsushi Moriwaki

The Mordell conjecture (Faltings's theorem) is one of the most important achievements in Diophantine geometry, stating that an algebraic curve of genus at least two has only finitely many rational points. This book provides a self-contained and detailed proof of the Mordell conjecture following the papers of Bombieri and Vojta. Also acting as a concise introduction to Diophantine geometry, the text starts from basics of algebraic number theory, touches on several important theorems and techniques (including the theory of heights, the Mordell–Weil theorem, Siegel's lemma and Roth's lemma) from Diophantine geometry, and culminates in the proof of the Mordell conjecture. Based on the authors' own teaching experience, it will be of great value to advanced undergraduate and graduate students in algebraic geometry and number theory, as well as researchers interested in Diophantine geometry as a whole.


1987 ◽  
Vol 102 (3) ◽  
pp. 453-457 ◽  
Author(s):  
András Némethi

Let C be a complex algebraic curve in the projective space ℙ2. The purpose of this paper is to calculate the fundamental group G of the complement of C in the case when C = X ∩ H1 ∩ … ∩ Hn−2, whereand Hi are generic hyperplanes (i = 1, … n − 2).


2008 ◽  
Vol 04 (06) ◽  
pp. 1019-1025 ◽  
Author(s):  
SUDESH K. KHANDUJA ◽  
MUNISH KUMAR

Let K = ℚ(θ) be an algebraic number field with θ in the ring AK of algebraic integers of K and f(x) be the minimal polynomial of θ over the field ℚ of rational numbers. For a rational prime p, let [Formula: see text] be the factorization of the polynomial [Formula: see text] obtained by replacing each coefficient of f(x) modulo p into product of powers of distinct monic irreducible polynomials over ℤ/pℤ. Dedekind proved that if p does not divide [AK : ℤ[θ]], then the factorization of pAK as a product of powers of distinct prime ideals is given by [Formula: see text], with 𝔭i = pAK + gi(θ)AK, and residual degree [Formula: see text]. In this paper, we prove that if the factorization of a rational prime p in AK satisfies the above-mentioned three properties, then p does not divide [AK:ℤ[θ]]. Indeed the analogue of the converse is proved for general Dedekind domains. The method of proof leads to a generalization of one more result of Dedekind which characterizes all rational primes p dividing the index of K.


1993 ◽  
Vol 02 (02) ◽  
pp. 141-148 ◽  
Author(s):  
HUGH M. HILDEN ◽  
MARIA TERESA LOZANO ◽  
JOSÉ MARIA MONTESINOS-AMILIBIA

Let (p/q, n) be the orbifold with cyclic isotropy of order n and with singular set the 2-bridge knot or link p/q where p and q are relatively prime numbers, q is odd, q is less than p, and q is not congruent to ±1 mod p (i.e. p/q is any non toroidal 2-bridge knot or link). We show that the orbifold fundamental group π1(p/q, n) is universal for n any multiple of 12. This means that if Γ is any such group, it can be thought of as a discrete group of hyperbolic isometries of hyperbolic 3-space ℍ3, and then, given any closed, oriented 3-manifold M, there exists a subgroup of finite index G of Γ such that M is homeomorphic to G\ℍ3. Since we have shown elsewhere that the group π1(5/3, 12) is an arithmetic group, it follows that there exists an orbifold, namely (5/3, 12), whose singular set is a knot, the figure eight, and whose fundamental group is both arithmetic and universal.


Sign in / Sign up

Export Citation Format

Share Document