UNIVERSAL 2-BRIDGE KNOT AND LINK ORBIFOLDS

1993 ◽  
Vol 02 (02) ◽  
pp. 141-148 ◽  
Author(s):  
HUGH M. HILDEN ◽  
MARIA TERESA LOZANO ◽  
JOSÉ MARIA MONTESINOS-AMILIBIA

Let (p/q, n) be the orbifold with cyclic isotropy of order n and with singular set the 2-bridge knot or link p/q where p and q are relatively prime numbers, q is odd, q is less than p, and q is not congruent to ±1 mod p (i.e. p/q is any non toroidal 2-bridge knot or link). We show that the orbifold fundamental group π1(p/q, n) is universal for n any multiple of 12. This means that if Γ is any such group, it can be thought of as a discrete group of hyperbolic isometries of hyperbolic 3-space ℍ3, and then, given any closed, oriented 3-manifold M, there exists a subgroup of finite index G of Γ such that M is homeomorphic to G\ℍ3. Since we have shown elsewhere that the group π1(5/3, 12) is an arithmetic group, it follows that there exists an orbifold, namely (5/3, 12), whose singular set is a knot, the figure eight, and whose fundamental group is both arithmetic and universal.

2020 ◽  
Vol 30 (5) ◽  
pp. 1224-1336
Author(s):  
Camillo De Lellis ◽  
Jonas Hirsch ◽  
Andrea Marchese ◽  
Salvatore Stuvard

AbstractWe establish a first general partial regularity theorem for area minimizing currents $${\mathrm{mod}}(p)$$ mod ( p ) , for every p, in any dimension and codimension. More precisely, we prove that the Hausdorff dimension of the interior singular set of an m-dimensional area minimizing current $${\mathrm{mod}}(p)$$ mod ( p ) cannot be larger than $$m-1$$ m - 1 . Additionally, we show that, when p is odd, the interior singular set is $$(m-1)$$ ( m - 1 ) -rectifiable with locally finite $$(m-1)$$ ( m - 1 ) -dimensional measure.


2013 ◽  
Vol 34 (3) ◽  
pp. 837-853 ◽  
Author(s):  
YAIR HARTMAN ◽  
YURI LIMA ◽  
OMER TAMUZ

AbstractLet $(G, \mu )$ be a discrete group equipped with a generating probability measure, and let $\Gamma $ be a finite index subgroup of $G$. A $\mu $-random walk on $G$, starting from the identity, returns to $\Gamma $ with probability one. Let $\theta $ be the hitting measure, or the distribution of the position in which the random walk first hits $\Gamma $. We prove that the Furstenberg entropy of a $(G, \mu )$-stationary space, with respect to the action of $(\Gamma , \theta )$, is equal to the Furstenberg entropy with respect to the action of $(G, \mu )$, times the index of $\Gamma $ in $G$. The index is shown to be equal to the expected return time to $\Gamma $. As a corollary, when applied to the Furstenberg–Poisson boundary of $(G, \mu )$, we prove that the random walk entropy of $(\Gamma , \theta )$ is equal to the random walk entropy of $(G, \mu )$, times the index of $\Gamma $ in $G$.


1964 ◽  
Vol 16 ◽  
pp. 299-309 ◽  
Author(s):  
I. M. Isaacs ◽  
D. S. Passman

Let G be a discrete group with group algebra C[G] over the complex numbers C. In (5) Kaplansky essentially proves that if G has a normal abelian subgroup of finite index n, then all irreducible representations of C[G] have degree ≤n. Our main theorem is a converse of Kaplansky's result. In fact we show that if all irreducible representations of C[G] have degree ≤n, then G has an abelian subgroup of index not greater than some function of n. (The degree of a representation of C[G] for arbitrary G is defined precisely in § 3.)


2005 ◽  
Vol 14 (02) ◽  
pp. 189-215 ◽  
Author(s):  
GREG FRIEDMAN

The classical knot groups are the fundamental groups of the complements of smooth or piecewise-linear (PL) locally-flat knots. For PL knots that are not locally-flat, there is a pair of interesting groups to study: the fundamental group of the knot complement and that of the complement of the "boundary knot" that occurs around the singular set, the set of points at which the embedding is not locally-flat. If a knot has only point singularities, this is equivalent to studying the groups of a PL locally-flat disk knot and its boundary sphere knot; in this case, we obtain a complete classification of all such group pairs in dimension ≥6. For more general knots, we also obtain complete classifications of these group pairs under certain restrictions on the singularities. Finally, we use spinning constructions to realize further examples of boundary knot groups.


2021 ◽  
Vol 2081 (1) ◽  
pp. 012030
Author(s):  
A O Shishanin

Abstract We observe some suitable examples of Calabi-Yau threefolds for heterotic superstring compactifications. It is reasonable to seek CY threefolds with Euler characteristic equals ±6 because of generation’s number. Hosotani mechanism for violations of the gauge group by the Wilson loops requires such CY space has a non-trivial fundamental group. These spaces can be obtained by factoring the complete intersection Calabi-Yau spaces by the free action of some discrete group. Also we shortly discuss cases when discrete groups act with fixed point sets.


1961 ◽  
Vol 5 (2) ◽  
pp. 49-66 ◽  
Author(s):  
Jens Mennicke

The object of this note is to study the regular coverings of the closed orientable surface of genus 2.Let the closed orientable surfaceFhof genushbe a covering ofF2and letand f be the fundamental groups respectively. Thenis a subgroup of f of indexn = h − 1. A covering is called regular ifis normal in f.Conversely, letbe a normal subgroup of f of finite index. Then there is a uniquely determined regular coveringFhsuch thatis the fundamental group ofFh. The coveringFhis an orientable surface. Since the indexnofin f is supposed to be finite,Fhis closed, and its genus is given byn=h − 1.The fundamental group f can be defined by.


2019 ◽  
pp. 1-19
Author(s):  
STEFAN FRIEDL ◽  
STEFANO VIDUSSI

This paper stems from the observation (arising from work of Delzant) that “most” Kähler groups $G$ virtually algebraically fiber, that is, admit a finite index subgroup that maps onto $\mathbb{Z}$ with finitely generated kernel. For the remaining ones, the Albanese dimension of all finite index subgroups is at most one, that is, they have virtual Albanese dimension $va(G)\leqslant 1$ . We show that the existence of algebraic fibrations has implications in the study of coherence and higher BNSR invariants of the fundamental group of aspherical Kähler surfaces. The class of Kähler groups with $va(G)=1$ includes virtual surface groups. Further examples exist; nonetheless, they exhibit a strong relation with surface groups. In fact, we show that the Green–Lazarsfeld sets of groups with $va(G)=1$ (virtually) coincide with those of surface groups, and furthermore that the only virtually RFRS groups with $va(G)=1$ are virtually surface groups.


Author(s):  
RÉMY MALGOUYRES

As its analogue in the continuous framework, the digital fundamental group represents major information on the topology of discrete objects. However, the fundamental group is abstract information and cannot directly be encoded in a computer by only using its definition. A classical mathematical way to encode a discrete group is to find a presentation of this group. In this paper, we construct a presentation for the fundamental group of an arbitrary graph, and a finite presentation (hence encodable in the memory of a computer) of any subset of ℤ3. This presentation can be computed by an efficient algorithm.


Sign in / Sign up

Export Citation Format

Share Document