scholarly journals THERMODYNAMICS OF NONCOMMUTATIVE DE SITTER SPACE–TIME

2009 ◽  
Vol 18 (01) ◽  
pp. 159-171 ◽  
Author(s):  
B. VAKILI ◽  
N. KHOSRAVI ◽  
H. R. SEPANGI

We study the effects of noncommutativity of space–time geometry on the thermodynamical properties of the de Sitter horizon. We show that noncommutativity results in modifications in temperature, entropy and vacuum energy and that these modifications are of order of the Planck scale, suggesting that the size of the noncommutative parameter should be close to that of the Planck. In an alternative way to deal with noncommutativity, we obtain a quantization rule for the entropy. Since noncommutativity in space–time geometry modifies the Heisenberg algebra and introduces the general uncertainty principle, we also investigate the above problem in this framework.

1980 ◽  
Vol 55 (1) ◽  
pp. 97-109 ◽  
Author(s):  
G. Denardo ◽  
E. Spallucci

2021 ◽  
Author(s):  
Wen-Xiang Chen

In this paper, it is explained that the role of the cosmological constant in the De Sitter space is similar to that of the preset boundary conditions in the superradiation phenomenon. In the previous literature, superradiance at a given boundary condition can cause the uncertainty principle to be less extreme, and so the uncertainty principle to be less extreme without the given boundary condition, might be one way to prove that the universe is ds spacetime.


2021 ◽  
Vol 36 (02) ◽  
pp. 2150011
Author(s):  
Nabil Mehdaoui ◽  
Lamine Khodja ◽  
Salah Haouat

In this work, we address the process of pair creation of scalar particles in [Formula: see text] de Sitter space–time in presence of a constant electromagnetic field by applying the noncommutativity on the scalar field up to first-order in [Formula: see text]. We calculate the density of particles created in the vacuum by the mean of the Bogoliubov transformations. In contrast to a previous result, we show that noncommutativity contributes to the pair creation process. We find that the noncommutativity plays the same role of chemical potential and gives an important interest for studies at high energies.


1978 ◽  
Vol 18 (10) ◽  
pp. 3565-3576 ◽  
Author(s):  
S. J. Avis ◽  
C. J. Isham ◽  
D. Storey

2014 ◽  
Vol 92 (6) ◽  
pp. 484-487 ◽  
Author(s):  
Fatemeh Ahmadi ◽  
Jafar Khodagholizadeh

Various approaches to quantum gravity, such as string theory, predict a minimal measurable length and a modification of the Heisenberg uncertainty principle near the Plank scale, known as the generalized uncertainty principle (GUP). Here we study the effects of GUP, which preserves the rotational symmetry of the space–time, on the Kepler problem. By comparing the value of the perihelion shift of the planet Mercury in Schwarzschild – de Sitter space–time with the resultant value of GUP, we find a relation between the minimal measurable length and the cosmological constant of the space–time. Now, if the cosmological constant varies with time, we have a variable minimal length in the space–time. Finally, we investigate the effects of GUP on the stability of circular orbits.


Sign in / Sign up

Export Citation Format

Share Document