scholarly journals Effect of GUP on the Kepler problem and a variable minimal length

2014 ◽  
Vol 92 (6) ◽  
pp. 484-487 ◽  
Author(s):  
Fatemeh Ahmadi ◽  
Jafar Khodagholizadeh

Various approaches to quantum gravity, such as string theory, predict a minimal measurable length and a modification of the Heisenberg uncertainty principle near the Plank scale, known as the generalized uncertainty principle (GUP). Here we study the effects of GUP, which preserves the rotational symmetry of the space–time, on the Kepler problem. By comparing the value of the perihelion shift of the planet Mercury in Schwarzschild – de Sitter space–time with the resultant value of GUP, we find a relation between the minimal measurable length and the cosmological constant of the space–time. Now, if the cosmological constant varies with time, we have a variable minimal length in the space–time. Finally, we investigate the effects of GUP on the stability of circular orbits.

2010 ◽  
Vol 25 (20) ◽  
pp. 1697-1703 ◽  
Author(s):  
S. MIGNEMI

It has been proposed that on (anti)-de Sitter background, the Heisenberg uncertainty principle should be modified by the introduction of a term proportional to the cosmological constant. We show that this modification of the uncertainty principle can be derived straightforwardly from the geometric properties of (anti)-de Sitter spacetime. We also discuss the connection between the so-called extended generalized uncertainty principle and triply special relativity.


2021 ◽  
Author(s):  
Wen-Xiang Chen

In this paper, it is explained that the role of the cosmological constant in the De Sitter space is similar to that of the preset boundary conditions in the superradiation phenomenon. In the previous literature, superradiance at a given boundary condition can cause the uncertainty principle to be less extreme, and so the uncertainty principle to be less extreme without the given boundary condition, might be one way to prove that the universe is ds spacetime.


2020 ◽  
Vol 17 (supp01) ◽  
pp. 2040004 ◽  
Author(s):  
Fabio Scardigli

Hawking temperature for a large class of black holes (Schwarzschild, Reissner–Nordström, (Anti) de Sitter, with spherical, toroidal and hyperboloidal topologies) is computed using only laws of classical physics plus the “classical” Heisenberg Uncertainty Principle. This principle is shown to be fully sufficient to get the result, and there is no need to this scope of a Generalized Uncertainty Principle or an Extended Uncertainty Principle.


2020 ◽  
Vol 35 (02n03) ◽  
pp. 2040043
Author(s):  
Mustafa Moumni ◽  
Ahlam Fouhal

In this work, we study the effects of Generalized Uncertainty Principle on the evolution of the Universe through Friedmann’s equations. We show that the effects are equivalent to those of the cosmological constant and thus they constitute an additional contribution in the acceleration of the expansion of the Universe.


Universe ◽  
2021 ◽  
Vol 8 (1) ◽  
pp. 17
Author(s):  
Pasquale Bosso

Several approaches to quantum gravity imply the presence of a minimal measurable length at high energies. This is in tension with the Heisenberg Uncertainty Principle. Such a contrast is then considered in phenomenological approaches to quantum gravity by introducing a minimal length in quantum mechanics via the Generalized Uncertainty Principle. Several features of the standard theory are affected by such a modification. For example, position eigenstates are no longer included in models of quantum mechanics with a minimal length. Furthermore, while the momentum-space description can still be realized in a relatively straightforward way, the (quasi-)position representation acquires numerous issues. Here, we will review such issues, clarifying aspects regarding models with a minimal length. Finally, we will consider the effects of such models on simple quantum mechanical systems.


2018 ◽  
Vol 33 (29) ◽  
pp. 1830028
Author(s):  
B. F. L. Ward

Working in the context of the Planck scale cosmology formulation of Bonanno and Reuter, we use our resummed quantum gravity approach to Einstein’s general theory of relativity to estimate the value of the cosmological constant as [Formula: see text]. We show that SUSY GUT models are constrained by the closeness of this estimate to experiment. We also address various consistency checks on the calculation. In particular, we use the Heisenberg uncertainty principle to remove a large part of the remaining uncertainty in our estimate of [Formula: see text].


Author(s):  
E Maghsoodi ◽  
H Hassanabadi ◽  
Won Sang Chung

Abstract We investigate the effect of the generalized uncertainty principle on the thermodynamic properties of the topological charged black hole in anti-de Sitter space within the framework of doubly special relativity. Our study is based on a heuristic analysis of a particle which is captured by the black hole. We obtain some thermodynamic properties of the black hole including temperature, entropy, and heat capacity in the spherical horizon case.


2020 ◽  
Vol 80 (8) ◽  
Author(s):  
J. M. Hoff da Silva ◽  
D. Beghetto ◽  
R. T. Cavalcanti ◽  
R. da Rocha

Abstract We investigate the effective Dirac equation, corrected by merging two scenarios that are expected to emerge towards the quantum gravity scale. Namely, the existence of a minimal length, implemented by the generalized uncertainty principle, and exotic spinors, associated with any non-trivial topology equipping the spacetime manifold. We show that the free fermionic dynamical equations, within the context of a minimal length, just allow for trivial solutions, a feature that is not shared by dynamical equations for exotic spinors. In fact, in this coalescing setup, the exoticity is shown to prevent the Dirac operator to be injective, allowing the existence of non-trivial solutions.


Sign in / Sign up

Export Citation Format

Share Document