scholarly journals GIANT DIPOLE RESONANCE IN DEFORMED NUCLEI: DEPENDENCE ON SKYRME FORCES

2007 ◽  
Vol 16 (02) ◽  
pp. 624-633 ◽  
Author(s):  
V. O. NESTERENKO ◽  
W. KLEINIG ◽  
J. KVASIL ◽  
P. VESELY ◽  
P.-G. REINHARD

The giant dipole resonance (GDR) in deformed nuclei is analyzed using the self-consistent separable random-phase-approximation (SRPA) with Skyrme forces SkT6, SkM*, SLy6 and SkI3. The deformed nuclei 150 Nd and 238 U are used as representative rare-earth and actinide samples. Dependences of the dipole strength distributions on some basic characteristics of the Skyrme functional and nuclear matter properties (isoscalar and isovector effective masses, time-odd contributions) are discussed. Particular attention is paid to the fragmentation structure of the GDR strength which is shown to depend sensitively to spin-orbit intruder states with large angular momentum.

2008 ◽  
Vol 17 (01) ◽  
pp. 89-99 ◽  
Author(s):  
V. O. NESTERENKO ◽  
W. KLEINIG ◽  
J. KVASIL ◽  
P. VESELY ◽  
P.-G. REINHARD

Time-odd densities and their effect on electric giant resonances are investigated within the self-consistent separable random-phase-approximation (SRPA) for a variety of Skyrme forces (SkT6, SkO, SkM*, SIII, SGII, SLy4, SLy6, SkI3). Time-odd densities are essential for maintaining the Galilean invariance of the Skyrme functional. Their contribution is determined by the values and signs of the isovector and isoscalar effective-mass parameters of the force. In even-even nuclei these densities are not active in the ground state but can affect the dynamics. As a particular case, we explore the role of the current density in the description of isovector E1 and isoscalar E2 giant resonances in a chain of spherical and deformed Nd isotopes with A=134-158. The relation of the current to the effective masses and relevant parameters of the Skyrme functional is analyzed. It is shown that the current contributes substantially to E1 and E2 and the contribution is the same for all the isotopes along the chain, i.e. for both standard and exotic nuclei.


2012 ◽  
Vol 21 (05) ◽  
pp. 1250041 ◽  
Author(s):  
J. KVASIL ◽  
A. REPKO ◽  
V. O. NESTERENKO ◽  
W. KLEINIG ◽  
P.-G. REINHARD

The giant dipole resonance (GDR) in N = 28 isotones (48 Ca , 50 Ti , 52 Cr , 54 Fe ) is analyzed in the framework of the Skyrme random-phase-approximation (RPA). Three Skyrme forces, SkM*, SLy6 and SV-bas, are used. The effects beyond RPA are simulated by the double folding procedure. We show that dipole strength exhibits a large collective shift, which testifies to a strong impact of the residual interaction and signals on considerable anharmonic effects. In 52 Cr , a significant pairing impact is found. For exception of 50 Ti , an acceptable agreement with the experiment data is obtained, which justifies the ability of Skyrme forces to describe GDR in light nuclei.


2018 ◽  
Vol 194 ◽  
pp. 04002
Author(s):  
N.N. Arsenyev ◽  
A.P. Severyukhin ◽  
V.V. Voronov ◽  
N.V. Giai

We study the effects of the phonon-phonon coupling on the low-energy electric dipole response within a microscopic model based on an effective Skyrme interaction. The finite rank separable approach for the quasiparticle random phase approximation is used. Choosing as an example the isotopic chain of Calcium, we show the ability of the method to describe the low-energy E1 strength distribution. With one and the same set of parameters we describe available experimental data for 48Ca and predict the electric dipole strength function for 50Ca.


Sign in / Sign up

Export Citation Format

Share Document