PION ELLIPTIC FLOW AND HBT INTERFEROMETRY IN A GRANULAR QUARK-GLUON PLASMA DROPLET MODEL

2007 ◽  
Vol 16 (07n08) ◽  
pp. 1832-1838
Author(s):  
WEI-NING ZHANG ◽  
YAN-YU REN ◽  
CHEUK-YIN WONG

We use a model of quark-gluon plasma granular droplets that evolve hydrodynamically to investigate pion elliptic flow and Hanbury–Brown–Twiss interferometry. We find that the data of pion transverse momentum spectra, elliptic flows, and HBT radii in [Formula: see text] Au + Au collisions at RHIC can be described well by an expanding source of granular droplets with an anisotropic velocity distribution.

Entropy ◽  
2021 ◽  
Vol 23 (4) ◽  
pp. 488
Author(s):  
Muhammad Waqas ◽  
Guang-Xiong Peng

Transverse momentum spectra of π+, p, Λ, Ξ or Ξ¯+, Ω or Ω¯+ and deuteron (d) in different centrality intervals in nucleus–nucleus collisions at the center of mass energy are analyzed by the blast wave model with Boltzmann Gibbs statistics. We extracted the kinetic freezeout temperature, transverse flow velocity and kinetic freezeout volume from the transverse momentum spectra of the particles. It is observed that the non-strange and strange (multi-strange) particles freezeout separately due to different reaction cross-sections. While the freezeout volume and transverse flow velocity are mass dependent, they decrease with the resting mass of the particles. The present work reveals the scenario of a double kinetic freezeout in nucleus–nucleus collisions. Furthermore, the kinetic freezeout temperature and freezeout volume are larger in central collisions than peripheral collisions. However, the transverse flow velocity remains almost unchanged from central to peripheral collisions.


Entropy ◽  
2021 ◽  
Vol 23 (7) ◽  
pp. 803
Author(s):  
Hai-Ling Lao ◽  
Fu-Hu Liu ◽  
Bo-Qiang Ma

The transverse momentum spectra of different types of particles, π±, K±, p and p¯, produced at mid-(pseudo)rapidity in different centrality lead–lead (Pb–Pb) collisions at 2.76 TeV; proton–lead (p–Pb) collisions at 5.02 TeV; xenon–xenon (Xe–Xe) collisions at 5.44 TeV; and proton–proton (p–p) collisions at 0.9, 2.76, 5.02, 7 and 13 TeV, were analyzed by the blast-wave model with fluctuations. With the experimental data measured by the ALICE and CMS Collaborations at the Large Hadron Collider (LHC), the kinetic freeze-out temperature, transverse flow velocity and proper time were extracted from fitting the transverse momentum spectra. In nucleus–nucleus (A–A) and proton–nucleus (p–A) collisions, the three parameters decrease with the decrease of event centrality from central to peripheral, indicating higher degrees of excitation, quicker expansion velocities and longer evolution times for central collisions. In p–p collisions, the kinetic freeze-out temperature is nearly invariant with the increase of energy, though the transverse flow velocity and proper time increase slightly, in the considered energy range.


Sign in / Sign up

Export Citation Format

Share Document