THEORETICAL INVESTIGATION OF POSITIVE PARITY BAND STRUCTURE OF Y AND Nb ISOTOPES

2012 ◽  
Vol 21 (10) ◽  
pp. 1250081 ◽  
Author(s):  
CHETAN SHARMA ◽  
PREETI VERMA ◽  
SURAM SINGH ◽  
ARUN BHARTI ◽  
S. K. KHOSA

The positive parity band structure of odd mass neutron-rich 97 – 103 Y and 99 – 105 Nb nuclei has been studied using microscopic technique known as the projected shell model (PSM) with the deformed single-particle states generated by the standard Nilsson potential. The nuclear structure properties like yrast spectra, energy splitting, moment of inertia, rotational frequencies and reduced transition probabilities B(M1) and B(E2) have been calculated and their comparison with the available experimental data has been made. A shape evolution has also been predicted in these isotopes as one moves from 97 Y to 99 Y and 99 Nb to 101 Nb . The PSM calculations also demonstrate the multi-quasiparticle structure in these nuclei.

2014 ◽  
Vol 23 (04) ◽  
pp. 1450020
Author(s):  
Deepti Sharma ◽  
Preeti Verma ◽  
Suram Singh ◽  
Arun Bharti ◽  
S. K. Khosa

Negative parity energy states in 121–131 La have been studied using Projected Shell Model (PSM). Some nuclear structure properties like yrast spectra, back-bending in moment of inertia, reduced transition probabilities and band diagrams have been described. The experimental feature of the co-existence of prolate–oblate shapes in 125–131 La isotopes has been satisfactorily explained by PSM results. Comparison of the theoretical data with their experimental counterparts has also been made. From the calculations, it is found that the yrast states arise because of multi-quasiparticle states.


2017 ◽  
Vol 48 (1) ◽  
pp. 85-91
Author(s):  
Suram Singh ◽  
Amit Kumar ◽  
Dhanvir Singh ◽  
Chetan Sharma ◽  
Arun Bharti ◽  
...  

2010 ◽  
Vol 19 (08n09) ◽  
pp. 1754-1762 ◽  
Author(s):  
YING-CHUN YANG ◽  
YANG SUN ◽  
T. TRIVEDI ◽  
R. PALIT ◽  
J. A. SHEIKH

A study of recently-measured high spin states of 75 Kr is carried out by using the Projected Shell Model. Calculations are performed up to spin I = 33/2 for the positive parity band and I = 27/2 for the negative parity band. Irregularities found in moment of inertia and in the deduced transition quadrupole moments Q t of the two bands are discussed in terms of the alignment of g 9/2 protons. Our study provides an insight into the shape evolution of the well-deformed nucleus 75 kr .


2011 ◽  
Vol 20 (11) ◽  
pp. 2351-2359 ◽  
Author(s):  
C. LIU ◽  
S. Y. WANG ◽  
B. QI ◽  
D. P. SUN ◽  
C. J. XU ◽  
...  

The high-spin states of 108 Ag have been studied by the in-beam γ spectroscopy with the reaction 104 Ru (7 Li ,3n)108 Ag at a beam energy of 33 MeV. The previously known positive-parity band structures have been extended up to higher spins. Their configurations are discussed based on alignments, band-crossing frequencies, and B(M1)/B(E2) ratios.


2020 ◽  
Vol 806 ◽  
pp. 135488 ◽  
Author(s):  
M. Venhart ◽  
M. Balogh ◽  
A. Herzáň ◽  
J.L. Wood ◽  
F.A. Ali ◽  
...  

2017 ◽  
Vol 53 (1) ◽  
Author(s):  
K. Y. Ma ◽  
J. B. Lu ◽  
X. Xu ◽  
Y. M. Liu ◽  
Z. Zhang ◽  
...  

2017 ◽  
Vol 26 (06) ◽  
pp. 1750041 ◽  
Author(s):  
Dhanvir Singh ◽  
Arun Bharti ◽  
Amit Kumar ◽  
Suram Singh ◽  
G. H. Bhat ◽  
...  

The projected shell model (PSM) with the deformed single-particle states, generated by the standard Nilsson potential, is applied to study the negative-parity high spin states of [Formula: see text] nuclei. The nuclear structure quantities like band structure and back-bending in moment of inertia have been calculated with PSM method and are compared with the available experimental data. In addition, the reduced transition probabilities, i.e., B[Formula: see text] and B[Formula: see text], are also obtained for the yrast band of these isotopes for the first time by using PSM wave function. A multi-quasiparticle structure has been predicted for [Formula: see text] isotopes by the present PSM calculations.


2020 ◽  
Vol 6 ◽  
pp. 140
Author(s):  
M. Serris ◽  
Et al.

High spin states in the isotope 122Xe  were populated using the reaction 96Zn(30Si,2n)122Xe at a beam energy of 135 MeV. The subsequent γ-ray deexcitation was studied using γ-ray spectroscopic methods. The analysis of γ-γ coincidences has revealed two new structures of competing dipole and quadrupole transitions. The highest states of a positive parity band provide characteristics consistent with an approach to band termination.


1979 ◽  
Vol 57 (11) ◽  
pp. 1959-1968 ◽  
Author(s):  
N. C. Singhal ◽  
M. W. Johns ◽  
J. V. Thompson

Energy levels in 149Tb have been studied by the 142Nd (10B,3n) reaction using 54 MeV 10B beams from the McMaster University FN accelerator. Excitation functions, angular distributions, prompt γ–γ coincidence, electron conversion, and linear polarization measurements were obtained. On the basis of these measurements we have identified two rotaition-aligned πh11/2 bands, a negative parity band up to spin 27/2−, and a positive parity band up to spin 27/2+. The energy spacings between levels in these bands strongly resemble those in the ground state and the 3− octupole band of the adjacent 148Gd core nucleus. Other high spin positive parity states up to spin of 41/2 are also observed. These high spin states show some evidence of rotational structure in 14 9Tb.


Sign in / Sign up

Export Citation Format

Share Document