BIRTH OF ANOMALOUS SCALING IN A MODEL OF HYDRODYNAMIC TURBULENCE WITH A TUNABLE PARAMETER

Fractals ◽  
2002 ◽  
Vol 10 (03) ◽  
pp. 291-296
Author(s):  
D. PIEROTTI ◽  
V. S. L'VOV ◽  
A. POMYALOV ◽  
I. PROCACCIA

We introduce a model of hydrodynamic turbulence with a tunable parameter ε, which represents the ratio between deterministic and random components in the coupling between N identical copies of the turbulent field. To compute the anomalous scaling exponents ζn (of the nth order structure functions) for chosen values of ε, we consider a systematic closure procedure for the hierarchy of equations for the n-order correlation functions, in the limit N → ∞. The parameter ε regularizes the closure procedure, in the sense that discarded terms are of higher order in ε compared to those retained. It turns out that after the terms of O(1), the first nonzero terms are O(ε4). Within this ε-controlled procedure, we have a finite and closed set of scale-invariant equations for the 2nd and 3rd order statistical objects of the theory. This set of equations retains all terms of O(1) and O(ε4) and neglects terms of O(ε6). On this basis, we expect anomalous corrections δ ζn in the scaling exponents ζn to increase with εn. This expectation is confirmed by extensive numerical simulations using up to 25 copies and 28 shells for various values of εn. The simulations demonstrate that in the limit N → ∞, the scaling is normal for ε < ε cr with ε cr ≈ 0.6. We observed the birth of anomalous scaling at ε = ε cr with [Formula: see text] according to our expectation.

Author(s):  
Natalie Rauter

AbstractIn this study a modeling approach for short fiber-reinforced composites is presented which allows one to consider information from the microstructure of the compound while modeling on the component level. The proposed technique is based on the determination of correlation functions by the moving window method. Using these correlation functions random fields are generated by the Karhunen–Loève expansion. Linear elastic numerical simulations are conducted on the mesoscale and component level based on the probabilistic characteristics of the microstructure derived from a two-dimensional micrograph. The experimental validation by nanoindentation on the mesoscale shows good conformity with the numerical simulations. For the numerical modeling on the component level the comparison of experimentally obtained Young’s modulus by tensile tests with numerical simulations indicate that the presented approach requires three-dimensional information of the probabilistic characteristics of the microstructure. Using this information not only the overall material properties are approximated sufficiently, but also the local distribution of the material properties shows the same trend as the results of conducted tensile tests.


2004 ◽  
Vol 18 (06) ◽  
pp. 827-840
Author(s):  
CHIH-CHUN CHIEN ◽  
NING-NING PANG ◽  
WEN-JER TZENG

We study the restricted solid-on-solid (RSOS) model by grouping consecutive sites into local configurations and obtain the master equations of the probability distribution of these local configurations in closed forms. The obtained solutions to these equations fit very well with those from direct computer simulation of the RSOS model. To demonstrate the effectiveness of this new approach for studying interfacial phenomena, we then calculate the correlation functions and even scaling exponents based on this obtained probability distribution of local configurations. The results are also consistent very well with those obtained from the KPZ equation or direct simulation of the RSOS model.


Fractals ◽  
2003 ◽  
Vol 11 (supp01) ◽  
pp. 227-232
Author(s):  
AYŞE ERZAN ◽  
HÜSEY.IN KAYA ◽  
ALKAN KABAKÇIOĞLU

We consider a one-parameter kinetic model for a fluctuating interface which can be thought of as an infinite string decorated with infinitely many closed strings. Numerical simulations show that a number of scaling exponents describing this string system may be related to the Kardar-Parisi-Zhang exponents. However, as the average velocity of the infinite string is taken to zero, and the string system becomes an isotropic fractal set, we also find new exponents which cannot be reduced to previously known ones.


2000 ◽  
Vol 416 ◽  
pp. 239-267 ◽  
Author(s):  
J. BEC ◽  
U. FRISCH ◽  
K. KHANIN

Burgers turbulence subject to a force f(x, t) = [sum ]jfj(x)δ(t − tj), where tj are 'kicking times' and the 'impulses' fj(x) have arbitrary space dependence, combines features of the purely decaying and the continuously forced cases. With large-scale forcing this ‘kicked’ Burgers turbulence presents many of the regimes proposed by E et al. (1997) for the case of random white-noise-in-time forcing. It is also amenable to efficient numerical simulations in the inviscid limit, using a modification of the fast Legendre transform method developed for decaying Burgers turbulence by Noullez & Vergassola (1994). For the kicked case, concepts such as ‘minimizers’ and ‘main shock’, which play crucial roles in recent developments for forced Burgers turbulence, become elementary since everything can be constructed from simple two-dimensional area-preserving Euler–Lagrange maps.The main results are for the case of identical deterministic kicks which are periodic and analytic in space and are applied periodically in time. When the space integrals of the initial velocity and of the impulses vanish, it is proved and illustrated numerically that a space- and time-periodic solution is achieved exponentially fast. In this regime, probabilities can be defined by averaging over space and time periods. The probability densities of large negative velocity gradients and of (not-too-large) negative velocity increments follow the power law with −7/2 exponent proposed by E et al. (1997) in the inviscid limit, whose existence is still controversial in the case of white-in-time forcing. This power law, which is seen very clearly in the numerical simulations, is the signature of nascent shocks (preshocks) and holds only when at least one new shock is born between successive kicks.It is shown that the third-order structure function over a spatial separation Δx is analytic in Δx although the velocity field is generally only piecewise analytic (i.e. between shocks). Structure functions of order p ≠ 3 are non-analytic at Δx = 0. For even p there is a leading-order term proportional to [mid ]Δx[mid ] and for odd p > 3 the leading-order term ∝Δx has a non-analytic correction ∝Δx[mid ]Δx[mid ] stemming from shock mergers.


Sign in / Sign up

Export Citation Format

Share Document