Computer Simulation Study of Silver Deposition from its Aqueous Solution in High Gradient Magnetic Field

Fractals ◽  
1998 ◽  
Vol 06 (02) ◽  
pp. 145-150 ◽  
Author(s):  
Wenyong Duan ◽  
Hiroshi Yano ◽  
Yoshifumi Tanimoto

The magnetic field effect on the silver deposition pattern generated from Ag +/ Cu redox reaction is simulated with the aid of a biased random walk model. In the model. In the model, one particle that represents an Ag + ion is generated at the same time, and it walks randomly under the influence of a magnetic force. Comparing the simulated pattern with the experimental one, it is confirmed that the convection induced by the magnetic force contributes chiefly to the silver deposition pattern in a high gradient magnetic field.

1985 ◽  
Vol 1 (4) ◽  
pp. 173-182 ◽  
Author(s):  
V. Hencl ◽  
K. Jahoda ◽  
E. Madai

The application of existing theoretical models for the computation of magnetic and hydraulic forces in a real oriented matrix consisting of regularly arranged rods and wires indicates that these models produce no exact results. The differences between computations and measurements of force effects documented by Maxwell lead to the conclusion that it is necessary to start with different physical assumptions when modelling a high–gradient separation process. First of all, the magnetic field of the rods or wires system differs from the magnetic field of a single rod. Second, the particle need not be attracted to the rod surface, it is brought there by the suspension stream and the magnetic force must hold it, so that it is not entrained by the streaming suspension. As the layer of attracted particles grows, the magnetic attractive force on the surface of the growing layer decreases until the magnetic attractive force is in equilibrium with the entraining force of suspension flow.


2004 ◽  
Vol 9 (2) ◽  
pp. 129-138
Author(s):  
J. Kleiza ◽  
V. Kleiza

A method for calculating the values of specific resistivity ρ as well as the product µHB of the Hall mobility and magnetic induction on a conductive sample of an arbitrary geometric configuration with two arbitrary fitted current electrodes of nonzero length and has been proposed an grounded. During the experiment, under the constant value U of voltage and in the absence of the magnetic field effect (B = 0) on the sample, the current intensities I(0), IE(0) are measured as well as the mentioned parameters under the effect of magnetic fields B1, B2 (B1 ≠ B2), i.e.: IE(β(i)), I(β(i)), i = 1, 2. It has been proved that under the constant difference of potentials U and sample thickness d, the parameters I(0), IE(0) and IE(β(i)), I(β(i)), i = 1, 2 uniquely determines the values of the product µHB and specific resistivity ρ of the sample. Basing on the conformal mapping method and Hall’s tensor properties, a relation (a system of nonlinear equations) between the above mentioned quantities has been found.


Author(s):  
Way-Jam Chen ◽  
Lily Shiau ◽  
Ming-Ching Huang ◽  
Chia-Hsing Chao

Abstract In this study we have investigated the magnetic field associated with a current flowing in a circuit using Magnetic Force Microscopy (MFM). The technique is able to identify the magnetic field associated with a current flow and has potential for failure analysis.


2013 ◽  
Vol 49 (1-2) ◽  
pp. 237-248
Author(s):  
A. V. Beznosov ◽  
O. O. Novozhilova ◽  
S. Yu. Savinov ◽  
M. V. Yarmonov ◽  
R. E. Alekseev

2019 ◽  
Vol 19 (8) ◽  
pp. 2879-2886 ◽  
Author(s):  
Song Feng ◽  
Leilei Yang ◽  
Guang Qiu ◽  
Jiufei Luo ◽  
Rui Li ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document