gradient magnetic field
Recently Published Documents


TOTAL DOCUMENTS

205
(FIVE YEARS 42)

H-INDEX

21
(FIVE YEARS 3)

2021 ◽  
pp. 117-120
Author(s):  
A.S. Mazmanishvili ◽  
N.G. Reshetnyak

The motion of electrons in cylindrical magnetic field with variable strength along the axis is considered. The formation of a beam with energy of 55 keV in the longitudinal direction during its transport in solenoidal magnetic field with large gradient has been studied. The bifurcation regimes of the dynamics of particles during their move-ment along the transport axis both forward to the target and back to the cathode region are considered. The operat-ing modes of the gun are obtained, in which the particle experiences the "bottleneck" effect and returns to the cath-ode region. It is shown that for given electron energy and fixed magnetic field, the parameter that determines the reflection of the particle is the polar angle of entry with respect to the axis of the cylindrical magnetic field. The re-sults of numerical simulation on the motion of the electron flow are presented.


2021 ◽  
pp. 121-125
Author(s):  
O.S. Mazmanishvili ◽  
M.G. Reshetnyak ◽  
V.P. Romasko ◽  
I.A. Chertishchev

The dynamics of the dimensions of the electron beam generated by the magnetron gun in the particle transport channel and the efficiency of focusing the tubular electron beam in the gradient magnetic field are investigated. The experiments were carried out with magnetron guns with secondary-emission cathodes (cathode diameters 36 and 16 mm, anodes diameters 78 and 36 mm) at cathode voltage of 20...80 kV. Magnetic fields were created both by the solenoid and jointly by the solenoid and the permanent magnet. The dependence of the radial distribution of the beam on metal targets on the amplitude and gradient of the magnetic field along the axis of the system is inves-tigated. The possibility of controlling the beam diameter by varying the magnetic field is shown. The imprints of collimated beams were obtained experimentally on targets located at selected distances. The obtained experimental data agree with the results of numerical simulation. It is shown that with an increase in the amplitude of the gradient magnetic field, the effect of radial focusing of the beam is more pronounced.


Biosensors ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 447
Author(s):  
Qiwei Hu ◽  
Siyuan Wang ◽  
Hong Duan ◽  
Yuanjie Liu

In this study, a fluorescent biosensor was developed for the sensitive detection of Salmonella typhimurium using a low-gradient magnetic field and deep learning via faster region-based convolutional neural networks (R-CNN) to recognize the fluorescent spots on the bacterial cells. First, magnetic nanobeads (MNBs) coated with capture antibodies were used to separate target bacteria from the sample background, resulting in the formation of magnetic bacteria. Then, fluorescein isothiocyanate fluorescent microspheres (FITC-FMs) modified with detection antibodies were used to label the magnetic bacteria, resulting in the formation of fluorescent bacteria. After the fluorescent bacteria were attracted against the bottom of an ELISA well using a low-gradient magnetic field, resulting in the conversion from a three-dimensional (spatial) distribution of the fluorescent bacteria to a two-dimensional (planar) distribution, the images of the fluorescent bacteria were finally collected using a high-resolution fluorescence microscope and processed using the faster R-CNN algorithm to calculate the number of the fluorescent spots for the determination of target bacteria. Under the optimal conditions, this biosensor was able to quantitatively detect Salmonella typhimurium from 6.9 × 101 to 1.1 × 103 CFU/mL within 2.5 h with the lower detection limit of 55 CFU/mL. The fluorescent biosensor has the potential to simultaneously detect multiple types of foodborne bacteria using MNBs coated with their capture antibodies and different fluorescent microspheres modified with their detection antibodies.


2021 ◽  
Vol 9 ◽  
Author(s):  
Guang-Ping Chen ◽  
Pu Tu ◽  
Chang-Bing Qiao ◽  
Jin-Xia Zhu ◽  
Qi Jia ◽  
...  

We consider a harmonically trapped rotating spin-1 Bose–Einstein condensate with SU(3) spin–orbit coupling subject to a gradient magnetic field. The effects of SU(3) spin–orbit coupling, rotation, and gradient magnetic field on the ground-state structure of the system are investigated in detail. Our results show that the interplay among SU(3) spin–orbit coupling, rotation, and gradient magnetic field can result in a variety of ground states, such as a vortex ring and clover-type structure. The numerical results agree well with our variational analysis results.


2021 ◽  
Vol 28 (5) ◽  
pp. 1686-1693
Author(s):  
M. Y. Wang ◽  
B. X. Du ◽  
X. X. Kong ◽  
Z. L. Li ◽  
M. Xiao ◽  
...  

AIP Advances ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 095303
Author(s):  
Yinghao Chen ◽  
Jinchuan Ju ◽  
Yunxiao Zhou ◽  
Jun Zhang ◽  
Wei Zhang ◽  
...  

Author(s):  
Oleksandr Mazmanishvili ◽  
Nikolay Reshetnyak

A two-mode cylindrical magnetic field is considered, the potential of which has a minimum. The object of this work is the study of the parameters of an electron beam when it moves in a solenoid field with the longitudinal trap formed by the magnetic field, and the construction of the computational model of the motion of an electron beam. The problem is posed of the stability of the motion of electrons in such solenoid magnetic field. The possibility of obtaining oscillatory modes of particle motion has been studied. It was found that for oscillations of particles with an energy of tens of kiloelectronvolts in the potential well in a well, the field with the amplitude of tens of thousands of Oersteds is required. For the solenoid magnetic field of the solenoid, the formation of electron beam with an energy of 55 keV in the longitudinal and radial directions during its transportation is studied. A section of a magnetron gun was used as the physical object. One possible direction is to combine the two matched magnetic systems of the gun to create the potential magnetic field well. It is shown that, for the chosen conditions, the motion of electrons can be associated with the model of three-dimensional oscillations. In this work, on the basis of the Hamiltonian formalism of the motion of electrons in a magnetic field and an algorithm for numerically finding solutions to the differential equations of dynamics, a software tool is constructed that allows one to obtain arrays of values of particle trajectories in the volume. The use of the software made it possible to simulate the main dependences of the motion of the electron beam in a given two-mode solenoid magnetic field. The results of numerical simulation of electron trajectories in the gradient magnetic field with the point secondary emission cathode located in the middle of the system are presented. The formation of the beam with energy of 55 keV in the radial and longitudinal directions during its transportation in a solenoid magnetic field with a large gradient is considered. For significant time intervals, the possibility of three-dimensional oscillations is shown and the operating modes of the magnetic system are obtained, in which the particle undergoes stable three-dimensional oscillations. The influence of the initial conditions during emission on the occurrence of the reciprocating oscillatory effect has been studied. It is shown that for a given electron energy and fixed magnetic field, the parameter that determines the reflection of a particle, is the polar angle of entry relative to the axis of the cylindrical magnetic field. The dependence of the formation of the final distribution of particles on the amplitude and gradient of the magnetic field along the axis of the system is investigated. The results of numerical simulation on the motion of the electron flow are presented. The characteristics of the resulting electron beam are considered on the basis of a model of electron flow motion. The obtained simulation results show that it is possible to establish the phenomenon of oscillatory-return longitudinal motion under experimental conditions. Keywords: electron beam, magnetron gun, three-dimensional oscillations, electron dynamics, gradient magnetic field, mathematical modeling.


Sign in / Sign up

Export Citation Format

Share Document