TWO-WAY COUPLED-MODE SOLUTIONS IN THE COMPLEX HORIZONTAL WAVENUMBER PLANE

2008 ◽  
Vol 16 (02) ◽  
pp. 225-256 ◽  
Author(s):  
STEVEN A. STOTTS

A coupled-mode formalism based on complex Airy layer mode solutions is presented. It is an extension into the complex horizontal wavenumber plane of the companion article [Stotts, J. Acoust. Soc. Am.111 (2002) 1623–1643], referred to here as the real horizontal wavenumber version, which accounted for general ocean environments but was restricted to normal modes on the real horizontal wavenumber axis. A formulation of the expressions for both trapped and continuum complex coupling coefficients is developed to dramatically reduce computer storage requirements and to make the calculation more practical. The motivation of this work is to demonstrate the numerical implementation of the derivations and to apply the method to an example benchmark. Differences from the real horizontal wavenumber formalism are highlighted. The coupled equations are solved using the Lanczos method [Knobles, J. Acoust. Soc. Am.96 (1994) 1741–1747]. Comparisons of the coupled-mode solution to a parabolic equation solution for the ONR shelf break benchmark validate the results.

1962 ◽  
Vol 29 (1) ◽  
pp. 7-14 ◽  
Author(s):  
R. M. Rosenberg

A system of n masses, equal or not, interconnected by nonlinear “symmetric” springs, and having n degrees of freedom is examined. The concept of normal modes is rigorously defined and the problem of finding them is reduced to a geometrical maximum-minimum problem in an n-space of known metric. The solution of the geometrical problem reduces the coupled equations of motion to n uncoupled equations whose natural frequencies can always be found by a single quadrature. An infinite class of systems, of which the linear system is a member, has been isolated for which the frequency amplitude can be found in closed form.


Author(s):  
T. I. Haaker

Abstract We consider in this paper the following system of coupled nonlinear oscillatorsx..+x-k(y-x)=εf(x,x.),y..+(1+δ)y-k(x-y)=εf(y,y.). In this system we assume ε to be a small parameter, i.e. 0 < ε ≪ 1. A coupling between the two oscillators is established through the terms involving the positive parameter k. The coupling may be interpreted as a mutual force depending on the relative positions of the two oscillators. For both ε and k equal to zero the two oscillators are decoupled and behave as harmonic oscillators with frequencies 1 and 1+δ, respectively. The parameter δ may therefore be viewed as a detuning parameter. Finally, the term ε f represents a small force acting upon each oscillator. Note that this force depends only on the position and velocity of the oscillator upon which the force is acting. To analyse the system’s dynamic behaviour we use the method of averaging. When k and δ are choosen such that no internal resonance occurs, one typically observes the following behaviour. If the trivial solution is unstable, solutions asymptotically tend to one of the two normal modes or to a mixed mode solution. For the special case with δ = 0 a system of two identical oscillators is found. If in addition k is O(ε) we obtain a 1 : 1 internal resonant system. The averaged equations may then be reduced to a system of three coupled equations — two for the amplitudes and one for the phase difference. Due to the fact that we consider identical oscillators there is a symmetry in the averaged equations. The normal mode solutions, as found for the non-resonant case, are still present. New mixed mode solutions appear. Moreover, Hopf bifurcations in the averaged system lead to limit cycles that correspond to oscillations in the original system with periodically modulated amplitudes and phases. We also consider the case with δ = O(ε), i.e. the case with nearly identical oscillators. If k = O(ε) again a 1 : 1 internal resonant system is found. Contrary to the previous cases the normal mode solutions no longer exist. Moreover, different bifurcations are observed due to the disappearance of the symmetry present in the system for s = 0. We apply some of the results obtained to a model describing aeroelastic oscillations of a structure with two-degrees-of-freedom.


1976 ◽  
pp. 409-426 ◽  
Author(s):  
Alan K. Cline ◽  
Gene H. Golub ◽  
George W. Platzman
Keyword(s):  

2020 ◽  
Author(s):  
Julien Touboul ◽  
Kostas Belibassakis

<p>In coastal areas, steep bathymetries and strong currents are often observed. Among several causes, the presence of cliffs, rocky beds, or human structures may cause strong variations of the sea bed, while oceanic circulation, tides, wind action or wave breaking can be responsible for the generation of strong currents. For both coastal safety and engineering purposes, there are many interests in providing efficient models predicting the nonlinear, phase resolved behavior of water waves in such areas. The difficulty is known to be important, and many models achieving that goal are described in the related literature.</p><p>Recently, it was established that beneath the influence of vertically uniform currents, the vorticity involved in depth varying mean flows could have significant impact on the propagation of water waves (Rey et al. 2014). This gave rise to new derivations of equations aimed to describe this interaction. First, an extended mild slope equation was obtained (Touboul et al. 2016). Then, the now classical coupled mode theory was introduced in the system to obtain a set of coupled equations, which could be compared to the system derived by Belibassakis et al (2011) but considering currents which may present constant shear with depth (Belibassakis et al. 2017, Belibassakis et al., 2019). In these works, the currents were assumed to vary linearly with depth, presenting a constant shear. However, this approach was recently extended to more general configurations (Belibassakis & Touboul, 2019; Touboul & Belibassakis, 2019).</p><p>In this work, we extend this model to three dimensional configurations. It is emphasized that the model is able to describe rotational waves, as expected, for example, when water waves propagate with a non-zero angle with respect to the current direction (see e.g. Ellingsen, 2016).</p><p>[1] Rey, V., Charland, J., Touboul, J., Wave – current interaction in the presence of a 3d bathymetry: deep water wave focusing in opposite current conditions. Phys. Fluids 26, 096601, 2014.</p><p>[2] Touboul J., Charland J., Rey V., Belibassakis K., Extended Mild-Slope equation for surface waves interacting with a vertically sheared current, Coastal Engineering, 116, 77–88, 2016.</p><p>[3] Belibassakis, K.A., Gerostathis, Th., Athanassoulis, G.A. A coupled-mode model for water wave scattering by horizontal, non-homogeneous current in general bottom topography, Applied Ocean Res. 33, 384– 397, 2011.</p><p>[4] Belibassakis K.A., Simon B., Touboul J., Rey V., A coupled-mode model for water wave scattering by vertically sheared currents in variable bathymetry regions, Wave Motion, vol.74, 73-92, 2017.</p><p>[5] Belibassakis K., Touboul J., Laffitte E., Rey  V., A mild-slope system for Bragg scattering of water waves by sinusoidal bathymetry in the presence of vertically sheared currents,  J. Mar. Sci. Eng., Vol.7(1), 9, 2019.</p><p>[6] Belibassakis K.A., Touboul J. A nonlinear coupled-mode model for waves propagating in</p><p>vertically sheared currents in variable bathymetry-collinear waves and currents, Fluids, 4(2),</p><p>61, 2019.</p><p>[7] J. Touboul & K. Belibassakis, A novel method for water waves propagating in the presence of vortical mean flows over variable bathymetry, J. Ocean Eng. and Mar. Energy, https://doi.org/10.1007/s40722-019-00151-w, 2019.</p><p>[8] Ellingsen, S.A., Oblique waves on a vertically sheared current are rotational, Eur. J. Mech. B-Fluid 56, 156–160, 2016.</p>


2012 ◽  
Author(s):  
Wenyu Luo ◽  
Chunmei Yang ◽  
Jixing Qin ◽  
Renhe Zhang

Sign in / Sign up

Export Citation Format

Share Document