MULTI-OBJECTIVE FULLY FUZZIFIED LINEAR PROGAMMING

Author(s):  
JAMES J. BUCKLEY ◽  
THOMAS FEURING ◽  
YOICHI HAYASHI

In this paper we wish to solve multi-objective fully fuzzified linear programming problems which are multi-objective linear programming problems where all the parameters and variables are fuzzy numbers. We change this problem into a single objective fuzzy linear programming problem and then show that our solution procedure can be used to explore the whole undominated set. An evolutionary algorithm is then designed to generate undominated solutions. An example is presented showing our evolutionary algorithm solution.

2021 ◽  
Vol 2021 ◽  
pp. 1-36
Author(s):  
Muhammad Athar Mehmood ◽  
Muhammad Akram ◽  
Majed G. Alharbi ◽  
Shahida Bashir

In this study, we present a technique to solve LR -type fully bipolar fuzzy linear programming problems (FBFLPPs) with equality constraints. We define LR -type bipolar fuzzy numbers and their arithmetic operations. We discuss multiplication of LR -type bipolar fuzzy numbers. Furthermore, we develop a method to solve LR -type FBFLPPs with equality constraints involving LR -type bipolar fuzzy numbers as parameters and variables. Moreover, we define ranking for LR -type bipolar fuzzy numbers which transform the LR -type FBFLPP into a crisp linear programming problem. Finally, we consider numerical examples to illustrate the proposed method.


2017 ◽  
Vol 27 (3) ◽  
pp. 563-573 ◽  
Author(s):  
Rajendran Vidhya ◽  
Rajkumar Irene Hepzibah

AbstractIn a real world situation, whenever ambiguity exists in the modeling of intuitionistic fuzzy numbers (IFNs), interval valued intuitionistic fuzzy numbers (IVIFNs) are often used in order to represent a range of IFNs unstable from the most pessimistic evaluation to the most optimistic one. IVIFNs are a construction which helps us to avoid such a prohibitive complexity. This paper is focused on two types of arithmetic operations on interval valued intuitionistic fuzzy numbers (IVIFNs) to solve the interval valued intuitionistic fuzzy multi-objective linear programming problem with pentagonal intuitionistic fuzzy numbers (PIFNs) by assuming differentαandβcut values in a comparative manner. The objective functions involved in the problem are ranked by the ratio ranking method and the problem is solved by the preemptive optimization method. An illustrative example with MATLAB outputs is presented in order to clarify the potential approach.


Author(s):  
Rasha Jalal

The aim of this paper is to suggest a solution procedure to fractional programming problem based on new ranking function (RF) with triangular fuzzy number (TFN) based on alpha cuts sets of fuzzy numbers. In the present procedure the linear fractional programming (LFP) problems is converted into linear programming problems. We concentrate on linear programming problem problems in which the coefficients of objective function are fuzzy numbers, the right- hand side are fuzzy numbers too, then solving these linear programming problems by using a new ranking function. The obtained linear programming problem can be solved using win QSB program (simplex method) which yields an optimal solution of the linear fractional programming problem. Illustrated examples and comparisons with previous approaches are included to evince the feasibility of the proposed approach.


Author(s):  
Sanjay Jain ◽  
Adarsh Mangal

In this research paper, an effort has been made to solve each linear objective function involved in the Multi-objective Linear Programming Problem (MOLPP) under consideration by AHA simplex algorithm and then the MOLPP is converted into a single LPP by using various techniques and then the solution of LPP thus formed is recovered by Gauss elimination technique. MOLPP is concerned with the linear programming problems of maximizing or minimizing, the linear objective function having more than one objective along with subject to a set of constraints having linear inequalities in nature. Modeling of Gauss elimination technique of inequalities is derived for numerical solution of linear programming problem by using concept of bounds. The method is quite useful because the calculations involved are simple as compared to other existing methods and takes least time. The same has been illustrated by a numerical example for each technique discussed here.


2021 ◽  
pp. 1-14
Author(s):  
Manisha Malik ◽  
S. K. Gupta ◽  
I. Ahmad

In many real-world problems, one may encounter uncertainty in the input data. The fuzzy set theory fits well to handle such situations. However, it is not always possible to determine with full satisfaction the membership and non-membership degrees associated with an element of the fuzzy set. The intuitionistic fuzzy sets play a key role in dealing with the hesitation factor along-with the uncertainity involved in the problem and hence, provides more flexibility in the decision-making process. In this article, we introduce a new ordering on the set of intuitionistic fuzzy numbers and propose a simple approach for solving the fully intuitionistic fuzzy linear programming problems with mixed constraints and unrestricted variables where the parameters and decision variables of the problem are represented by intuitionistic fuzzy numbers. The proposed method converts the problem into a crisp non-linear programming problem and further finds the intuitionistic fuzzy optimal solution to the problem. Some of the key significance of the proposed study are also pointed out along-with the limitations of the existing studies. The approach is illustrated step-by-step with the help of a numerical example and further, a production planning problem is also demonstrated to show the applicability of the study in practical situations. Finally, the efficiency of the proposed algorithm is analyzed with the existing studies based on various computational parameters.


2004 ◽  
Vol 21 (01) ◽  
pp. 127-139 ◽  
Author(s):  
G. R. JAHANSHAHLOO ◽  
F. HOSSEINZADEH LOTFI ◽  
N. SHOJA ◽  
G. TOHIDI

In this paper, a method using the concept of l1-norm is proposed to find all the efficient solutions of a 0-1 Multi-Objective Linear Programming (MOLP) problem. These solutions are specified without generating all feasible solutions. Corresponding to a feasible solution of a 0-1 MOLP problem, a vector is constructed, the components of which are the values of objective functions. The method consists of a one-stage algorithm. In each iteration of this algorithm a 0-1 single objective linear programming problem is solved. We have proved that optimal solutions of this 0-1 single objective linear programming problem are efficient solutions of the 0-1 MOLP problem. Corresponding to efficient solutions which are obtained in an iteration, some constraints are added to the 0-1 single objective linear programming problem of the next iteration. Using a theorem we guarantee that the proposed algorithm generates all the efficient solutions of the 0-1 MOLP problem. Numerical results are presented for an example taken from the literature to illustrate the proposed algorithm.


Sign in / Sign up

Export Citation Format

Share Document